




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东青岛平度第三中学2024届高一上数学期末调研模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12小题,共60分)1.在中,若,则的形状为()A.等边三角形 B.直角三角形C.钝角三角形 D.不含角的等腰三角形2.已知,,则直线与直线的位置关系是()A.平行 B.相交或异面C.异面 D.平行或异面3.将函数图象上的点向右平移个单位长度后得到点,若点仍在函数的图象上,则的最小值为()A. B.C. D.4.《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约米,肩宽约为米,“弓”所在圆的半径约为米,你估测一下掷铁饼者双手之间的距离约为(参考数据:,)()A.米 B.米C.米 D.米5.已知命题,;命题,.若,都是假命题,则实数的取值范围为()A. B.C.或 D.6.已知,则()A. B.C. D.7.图(1)是某条公共汽车线路收支差额关于乘客量的图象,图(2)、(3)是由于目前本条路线亏损,公司有关人员提出的两种扭亏为盈的建议,则下列说法错误的是()A.图(1)的点的实际意义为:当乘客量为0时,亏损1个单位B.图(1)的射线上的点表示当乘客量小于3时将亏损,大于3时将盈利C.图(2)的建议为降低成本而保持票价不变D.图(3)的建议为降低成本的同时提高票价8.已知,,,则a、b、c的大小关系为()A. B.C. D.9.已知,,,则下列判断正确的是()A. B.C. D.10.若点在函数的图像上,则A.8 B.6C.4 D.211.如图,在正四棱柱中,,点为棱的中点,过,,三点的平面截正四棱柱所得的截面面积为()A.2 B.C. D.12.已知函数,则的值为()A.1 B.2C.4 D.5二、填空题(本大题共4小题,共20分)13.在正三角形中,是上的点,,则________14.已知是定义在上的奇函数,当时,,函数如果对,,使得,则实数m的取值范围为______15.若点位于第三象限,那么角终边落在第___象限16.____________三、解答题(本大题共6小题,共70分)17.已知函数(Ⅰ)求的最小正周期及对称轴方程;(Ⅱ)当时,求函数的最大值、最小值,并分别求出使该函数取得最大值、最小值时的自变量的值.18.如图1,直角梯形ABCD中,,,.如图2,将图1中沿AC折起,使得点D在平面ABC上的正投影G在内部.点E为AB的中点.连接DB,DE,三棱锥D-ABC的体积为.对于图2的几何体(1)求证:;19.假设有一套住房从2002年的20万元上涨到2012年的40万元.下表给出了两种价格增长方式,其中是按直线上升的房价,是按指数增长的房价,是2002年以来经过的年数.05101520万元2040万元2040(1)求函数的解析式;(2)求函数的解析式;(3)完成上表空格中的数据,并在同一直角坐标系中画出两个函数的图像,然后比较两种价格增长方式的差异.20.已知定义在R上的函数满足:①对任意实数,,均有;②;③对任意,(1)求的值,并判断的奇偶性;(2)对任意的x∈R,证明:;(3)直接写出的所有零点(不需要证明)21.某种商品的市场需求量(万件)、市场供应量(万件)与市场价格(元/件)分别近似地满足下列关系:,.当时的市场价格称为市场平衡价格,此时的需求量称为平衡需求量(1)求平衡价格和平衡需求量;(2)若该商品的市场销售量(万件)是市场需求量和市场供应量两者中的较小者,该商品的市场销售额(万元)等于市场销售量与市场价格的乘积①当市场价格取何值时,市场销售额取得最大值;②当市场销售额取得最大值时,为了使得此时市场价格恰好是新的市场平衡价格,则政府应该对每件商品征税多少元?22.如图,直三棱柱中,分别为的中点.(1)求证:平面;(2)已知,,,求三棱锥的体积.
参考答案一、选择题(本大题共12小题,共60分)1、B【解析】利用三角形的内角和,结合差角的余弦公式,和角的正弦公式,即可得出结论【详解】解:由题意可得sin(A﹣B)=1+2cos(B+C)sin(A+C),∴sin(A﹣B)=1﹣2cosAsinB,∴sinAcosB﹣cosAsinB=1﹣2cosAsinB,∴sinAcosB+cosAsinB=1,∴sin(A+B)=1,∴A+B=90°,∴△ABC是直角三角形故选:B【点睛】本题考查差角的余弦公式,和角的正弦公式,考查学生的计算能力,属于基础题2、D【解析】由直线平面,直线在平面内,知,或与异面【详解】解:直线平面,直线在平面内,,或与异面,故选:D【点睛】本题考查平面的基本性质及其推论,解题时要认真审题,仔细解答3、B【解析】作出函数和直线图象,根据图象,利用数形结合方法可以得到的最小值.【详解】画出函数和直线的图象如图所示,是它们的三个相邻的交点.由图可知,当在点,在点时,的值最小,易知的横坐标分别为,所以的最小值为,故选:B.4、C【解析】先计算弓所在的扇形的弧长,算出其圆心角后可得双手之间的距离.【详解】弓形所在的扇形如图所示,则的长度为,故扇形的圆心角为,故.故选:C.5、B【解析】写出命题p,q的否定命题,由题意得否定命题为真命题,解不等式,即可得答案.【详解】因为命题p为假命题,则命题p的否定为真命题,即:为真命题,解得,同理命题q为假命题,则命题q的否定为真命题,即为真命题,所以,解得或,综上:,故选:B【点睛】本题考查命题的否定,存在量词命题与全程量词命题的否定关系,考查分析理解,推理判断的能力,属基础题.6、D【解析】先求出,再分子分母同除以余弦的平方,得到关于正切的关系式,代入求值.【详解】由得,,所以故选:D7、D【解析】根据一次函数的性质,结合选项逐一判断即可.【详解】A:当时,,所以当乘客量为0时,亏损1个单位,故本选项说法正确;B:当时,,当时,,所以本选项说法正确;C:降低成本而保持票价不变,两条线是平行,所以本选项正确;D:由图可知中:成本不变,同时提高票价,所以本选项说法不正确,故选:D8、A【解析】利用指数函数、对数函数、三角函数的知识判断出a、b、c的范围即可.【详解】因为,,所以故选:A9、C【解析】对数函数的单调性可比较、与的大小关系,由此可得出结论.【详解】,即.故选:C.10、B【解析】由已知利用对数的运算可得tanθ,再利用倍角公式及同角三角函数基本关系的运用化简即可求值【详解】解:∵点(8,tanθ)在函数y=的图象上,tanθ,∴解得:tanθ=3,∴2tanθ=6,故选B【点睛】本题主要考查了对数的运算性质,倍角公式及同角三角函数基本关系的运用,属于基础题11、D【解析】根据题意画出截面,得到截面为菱形,从而可求出截面的面积.【详解】取的中点,的中点,连接,因为该几何体为正四棱柱,∴故四边形为平行四边形,所以,又,∴,同理,且,所以过,,三点平面截正四棱柱所得的截面为菱形,所以该菱形的面积为.故选:D12、D【解析】根据函数的定义域求函数值即可.【详解】因为函数,则,又,所以故选:D.【点睛】本题考查分段函数根据定义域求值域的问题,属于基础题.二、填空题(本大题共4小题,共20分)13、【解析】根据正三角形的性质以及向量的数量积的定义式,结合向量的特点,可以确定,故答案为考点:平面向量基本定理,向量的数量积,正三角形的性质14、【解析】先求出时,,,然后解不等式,即可求解,得到答案【详解】由题意,可知时,为增函数,所以,又是上的奇函数,所以时,,又由在上的最大值为,所以,,使得,所以.故答案为【点睛】本题主要考查了函数的奇偶性的判定与应用,以及函数的最值的应用,其中解答中转化为是解答的关键,着重考查了转化思想,推理与运算能力,属于基础题.15、四【解析】根据所给的点在第三象限,写出这个点的横标和纵标都小于0,根据这两个都小于0,得到角的正弦值小于0,余弦值大于0,得到角是第四象限的角【详解】解:∵点位于第三象限,∴sinθcosθ<02sinθ<0,∴sinθ<0,Cosθ>0∴θ是第四象限的角故答案为四【点睛】本题考查三角函数的符号,这是一个常用到的知识点,给出角的范围要求说出三角函数的符号,反过来给出三角函数的符号要求看出角的范围16、【解析】,故答案为.考点:对数的运算.三、解答题(本大题共6小题,共70分)17、(Ⅰ)最小正周期是,对称轴方程为;(Ⅱ)时,函数取得最小值,最小值为-2,时,函数取得最大值,最大值为1.【解析】(Ⅰ)利用二倍角公式及辅助角公式将函数化简,再根据正弦函数的性质求出对称轴及最小正周期;(Ⅱ)由的取值范围,求出的取值范围,再根据正弦函数的性质计算可得;【详解】解:(Ⅰ)由与得所以的最小正周期是;令,解得,即函数的对称轴为;(Ⅱ)当时,所以,当,即时,函数取得最小值,最小值为当,即时,函数取得最大值,最大值为.18、(1)证明见解析;(2).【解析】(1)取AC的中点F,连接DF,CE,EF,证明AC⊥平面DEF即可.(2)以G为坐标原点,建立空间直角坐标系,利用向量的方法求解线面角.【小问1详解】取AC的中点F,连接DF,CE,EF,则△DAC,△EAC均为等腰直角三角形∴AC⊥DF,AC⊥EF,∵DF∩EF=F,∴AC⊥平面DEF,又DE⊂平面DEF,∴DE⊥AC【小问2详解】连接GA,GC,∵DG⊥平面ABC,而GA⊂平面ABC,GC⊂平面ABC,∴DG⊥GA,DG⊥GC,又DA=DC,∴GA=GC,∴G在AC的垂直平分线上,又EA=EC,∴E在AC的垂直平分线上,∴EG垂直平分AC,又F为AC的中点,∴E,F,G共线∴S△ABC=×|AC|×|BC|=×6×6=18,∴VDABC=×S△ABC×|DG|=×18×|DG|=12,∴DG=2在Rt△DGF中,|GF|=以G为坐标原点,GM为x轴,GE为y轴,GD为z轴,建立如图所示的空间直角坐标系,则A(3,-1,0),E(0,2,0),C(-3,-1,0),D(0,0,2),∴=(0,2,-2),=(3,-1,-2),=(-3,-1,-2),设平面DAC的法向量为=(x,y,z),则,得,令z=1,得:,于是,.19、(1)(2)(3)详见解析【解析】(1)因为是按直线上升的房价,设,由表格可知,,进而求解即可;(2)因为是按指数增长的房价,设,由表格可知,,进而求解即可;(3)由(1)(2)补全表格,画出图像,进而分析即可【详解】(1)因为是按直线上升的房价,设,由,,可得,即.(2)因为是按指数增长的房价,设,由,可得,即.(3)由(1)和(2),当时,;当时,;当时,,则表格如下:05101520万元2030405060万元204080则图像为:根据表格和图像可知:房价按函数呈直线上升,每年的增加量相同,保持相同的增长速度;按函数呈指数增长,每年的增加量越来越大,开始增长慢,然后会越来越快,但保持相同的增长比例.【点睛】本题考查一次函数、指数型函数在实际中的应用,考查理解分析能力20、(1)=2,f(x)为偶函数;(2)证明见解析;(3),.【解析】(1)令x=y=0可求f(0);令x=y=1可求f(2);令x=0可求奇偶性;(2)令y=1即可证明;(3)(1),是以4为周期的周期函数,由偶函数的性质可得,从而可得的所有零点【小问1详解】∵对任意实数,,均有,∴令,则,可得,∵对任意,,,∴f(0)>0,∴;令,则;∴;∵f(x)定义域为R关于原点对称,且令时,,∴是R上的偶函数;【小问2详解】令,则,则,∴,即;【小问3详解】(1),且是以4为周期的周期的偶函数,由偶函数的性质可得,从而可得f(-1)=(1)=f(3)=f(5)=…=0,故f(x)的零点为奇数,即f(x)所有零点为,.21、(1)平衡价格是30元,平衡需求量是40万件.(2)①市场价格是35元时,市场总销售额取得最大值.②政府应该对每件商品征7.5元【解析】(1)令,得,可得,此时,从而可得结果;(2)①先求出,从而得,根据二次函数的性质分别求出两段函数的最值再比较大小即可的结果;②政府应该对每件商品征税元,则供应商的实际价格是每件元,根据可得结果.试题解析:(1)令,得,故,此时答:平衡价格是30元,平衡需求量是40万件(2)①由,,得,由题意可知:故当时,,即时,;当时,,即时,,综述:当时,时,答:市场价格是35元时,市场总销售额取得最大值②设政府应该对每件商品征税元,则供应商的实际价格是每件元,故,令,得,由题意可知上述方程的解是,代入上述方程得答:政府应该对每件商品征7.5元.【方法点睛】本题主要考查阅读能力及建模能力、分段函数的解析式,属于难题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2020-2025年材料员之材料员专业管理实务高分通关题库A4可打印版
- 传统散打教学课件
- 七上生物教学课件
- 典型工作任务饱和器工岗位13课件
- 第六章电气安全与静电防护技术化工安全技术10课件
- 怎样描述力教学课件
- 内科护理教学比赛课件
- 口腔知识科普课件下载
- 小学生科普课件知识
- 口腔助理技能操作课件
- 2023年四川甘孜州遴选(考调)公务员考试真题
- 高等教育研究项目指南(3篇模板)
- 办公楼维修改造施工方案
- 中国人工智能应用现状及未来发展趋势分析
- 多重耐药菌感染预防与控制
- 半结构化结构化面试题目
- 2023年农村土地承包经营权确权登记颁证项目作业指导书
- 节日氛围营造投标方案(技术方案)
- 安全注射完整
- 乐高大颗粒搭建课件:救护车
- 领会《护士条例》课件
评论
0/150
提交评论