版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题18.3菱形的判定专项提升训练(重难点培优)班级:___________________姓名:_________________得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2023春•杜尔伯特县期中)菱形的周长为12,一个内角为60°,则较短的对角线长为()A.2 B.3 C.1 D.2.(2023春•南岗区校级期中)如图,菱形ABCD的两条对角线长分别为AC=9和BD=6,那么菱形ABCD的面积为()A.4 B.30 C.54 D.273.(2023春•墨玉县期末)如图,菱形ABCD中,AC=8.BD=6.则菱形的面积为()A.20 B.40 C.28 D.244.(2023春•南召县期末)四边形具有不稳定性,小明将一个菱形ABCD转动,使它形状改变,当转动到使∠B=60°时(如图),测得AC=2;当转动到使∠B=120°时,AC的值为()A.2 B. C. D.5.(2023春•博兴县期末)如图,菱形ABCD的对角线AC、BD相交于点O,DE⊥AB于点E,若AB=5,DE=4,则在下列结论中正确的是()A.DB=5 B.AE=4 C.BE=2 D.OA=36.(2023春•承德县期末)如图,在平面直角坐标系中,菱形ABCD的顶点D在x轴上,边BC在y轴上,若点A的坐标为(12,13),则点C的坐标是()A.(0,﹣8) B.(0,﹣5) C.(﹣5,0) D.(0,﹣6)7.(2023春•丰泽区校级月考)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,OH=2,若菱形ABCD的面积为12,则AB的长为()A.10 B.4 C. D.68.(2023秋•合川区校级月考)如图,在菱形ABCD中,M.N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BC若∠DAC=28°,则∠OBC的度数为()A.28° B.52° C.62° D.72°9.(2023秋•胶州市校级月考)如图,在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接BD,CG.有下列结论:①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④,其中正确的结论有()A.①②③ B.①②④ C.①③④ D.②③④10.(2023春•新抚区期末)如图,点P是菱形ABCD的对角线AC延长线上一点,过点P分别作AD,DC延长线的垂线,垂足分别为点E,F.若∠B=120°,AB=,则PE﹣PF的值为()A.2 B.3 C.4 D.6二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2023秋•牡丹区校级月考)如图,菱形ABCD的对角线相交于点O,若AC=24,AB=13,则菱形ABCD的面积是.12.(2023秋•东明县校级月考)已知菱形的两条对角线长为10cm和24cm,那么这个菱形的周长为,面积为.13.(2023春•杭州期中)如图,菱形ABCD中,AC,BD相交于O,DE⊥BC于E,连接OE,若∠BAD=40°,则∠ODE的度数为.14.(2023春•吴中区校级期中)如图,在菱形ABCD中,AB=2,∠A=120°,E,F分别是边AB和CD上的点,EF⊥CD于点F,则线段EF的长度为.15.(2023春•集美区校级期中)如图,在菱形ABCD中,∠B=60°,AB=a,点E,F分别是边AB,AD上的动点,且AE+AF=a,则△CEF面积的最小值为.16.(2023•温江区校级自主招生)如图,四边形ABCD是菱形,对角线AC,BD交于点O,E是边AD的中点,过点E作EF⊥BD,EG⊥AC,点F,G为垂足,若AC=10,BD=24,则FG的长为.17.(2023春•南岗区校级期中)如图,在边长为5的菱形ABCD中,∠BAD=60°,点E、点F分别在AD、CD上,且∠EBF=60°,连接EF,若AE=2,则EF的长度为.18.(2023春•鼓楼区校级期中)如图,在菱形ABCD中,AB=6,∠ABC=120°,点E在边BC上(不与端点重合),AE交BD于点F,以EF为边向外作等边△EFG,连接CF,BG,现给出以下结论:①∠EAB=30°;②△ABF≌△CBF;③直线AB与直线DC的距离是9;④BF+BG=BE.其中正确的是(写出所有正确结论的序号).三、解答题(本大题共6小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2023秋•薛城区月考)如图,已知A,F,C,D四点在同一条直线上,AF=CD,AB∥ED,且AB=ED.(1)求证:△ABC≌△DEF.(2)如果四边形EFBC是菱形,已知EF=3,DE=4,∠DEF=90°,求AF的长度.20.(2023春•姑苏区校级期中)如图,已知菱形ABCD的对角线AC、BD相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:四边形BECD是平行四边形;(2)若∠E=60°,BD=8,求菱形ABCD的面积.21.(2023•雨花区校级开学)如图,四边形ABCD是菱形,AE⊥BC于点E,AF⊥CD于点F.(1)求证:△ABE≌△ADF;(2)若AE=4,CF=2,求菱形的面积.22.(2023春•南浔区期末)如图,已知四边形ABCD是菱形,点E、F分别是边AB、BC的中点,连结DE、EF、DF.(1)求证:△DEF是等腰三角形;(2)若AD=10,EF=8,求菱形ABCD的面积.23.(2023春•重庆期末)如图,在菱形ABCD中,∠C=60°,E是对角线BD上一点.(1)如图1,若E是线段BD的中点,且AB=6,求AE的长度;(2)如图2,F是线段AB延长线上一点,且DE=BF,连接AE,EF.求证:AE=EF.24.(2023春•抚远市期末)在菱形ABCD中,∠ABC=60°,P是射线BD上一动点,以AP为边向右侧作等边三角形APE,点E的位置随点P位置的变化而变化,连接CE.(1)如图①,当点E在菱形ABCD内部或边上时,求证:BD=CE+PD;(2)如图②、图③,请分别写出线段BD,CE,PD之间的数量关系,不需证明.专题18.3菱形的判定专项提升训练(重难点培优)班级:___________________姓名:_________________得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2023春•杜尔伯特县期中)菱形的周长为12,一个内角为60°,则较短的对角线长为()A.2 B.3 C.1 D.【分析】根据已知可得较短的对角线与两邻边组成等边三角形,则菱形较短的对角线长=菱形的边长,根据周长可求得菱形的边长从而较短的对角线也就求得了.【解答】解:由已知得,较短的对角线与两邻边组成等边三角形,则菱形较短的对角线长=菱形的边长=12÷4=3,故选:B.2.(2023春•南岗区校级期中)如图,菱形ABCD的两条对角线长分别为AC=9和BD=6,那么菱形ABCD的面积为()A.4 B.30 C.54 D.27【分析】直接根据菱形面积等于两条对角线的长度乘积的一半进行计算即可.【解答】解:∵四边形ABCD是菱形,∴菱形ABCD的面积=BD•AC=×6×9=27,故选:D.3.(2023春•墨玉县期末)如图,菱形ABCD中,AC=8.BD=6.则菱形的面积为()A.20 B.40 C.28 D.24【分析】根据菱形的面积等于对角线乘积的一半可得答案.【解答】解:菱形的面积为6×8÷2=24,故选:D.4.(2023春•南召县期末)四边形具有不稳定性,小明将一个菱形ABCD转动,使它形状改变,当转动到使∠B=60°时(如图),测得AC=2;当转动到使∠B=120°时,AC的值为()A.2 B. C. D.【分析】根据有一个角是60°的等腰三角形是等边三角形可得菱形的边长为2,再根据菱形的性质以及勾股定理解答即可.【解答】解:因为菱形ABCD,∠B=60°时,测得AC=2,所以△ABC是等边三角形,所以菱形的边长为2,当转动到使∠B=120°时,如图所示:因为AC⊥BD,∠ABC=120°,所以∠ABO=60°,所以∠OAB=30°,所以,所以,所以AC=2AO=.故选:B.5.(2023春•博兴县期末)如图,菱形ABCD的对角线AC、BD相交于点O,DE⊥AB于点E,若AB=5,DE=4,则在下列结论中正确的是()A.DB=5 B.AE=4 C.BE=2 D.OA=3【分析】根据菱形的性质可知AB=AD,AO=OC,OD=OB,由于DE⊥AB于点E,所以在Rt△AED中,利用勾股定理可以求出AE,进而求出BE、BD,再在Rt△AOB中求出OA即可作出判断.【解答】解:∵四边形ABCD是菱形,∴AB=AD,AO=OC,OD=OB,∵AB=5,∴AD=5,∵DE⊥AB于点E,DE=4在Rt△AED中,根据勾股定理得,AE==3,故B错误;∴BE=AB﹣AE=5﹣3=2,故C正确;在Rt△BDE中,根据勾股定理得,BD=,故A错误;∴OB=BD=,在Rt△AOB中,根据勾股定理得,OA=,故D错误.故选:C.6.(2023春•承德县期末)如图,在平面直角坐标系中,菱形ABCD的顶点D在x轴上,边BC在y轴上,若点A的坐标为(12,13),则点C的坐标是()A.(0,﹣8) B.(0,﹣5) C.(﹣5,0) D.(0,﹣6)【分析】在Rt△ODC中,利用勾股定理求出OC即可解决问题.【解答】解:∵A(12,13),∴OD=12,AD=13,∵四边形ABCD是菱形,∴CD=AD=13,在Rt△ODC中,OC=,∴C(0,﹣5).故选:B.7.(2023春•丰泽区校级月考)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,OH=2,若菱形ABCD的面积为12,则AB的长为()A.10 B.4 C. D.6【分析】由菱形的性质得OA=OC,OB=OD,AC⊥BD,再求出BD=4,则OB=2,然后由菱形面积求出AC=6,则OA=3,即可解决问题.【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,∵DH⊥AB,∴∠BHD=90°,∴BD=2OH,∵OH=2,∴BD=4,∴OB=2,∵菱形ABCD的面积=AC•BD=AC×4=12,∴AC=6,∴OA=3,在Rt△AOB中,由勾股定理得:AB===,故选:C.8.(2023秋•合川区校级月考)如图,在菱形ABCD中,M.N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BC若∠DAC=28°,则∠OBC的度数为()A.28° B.52° C.62° D.72°【分析】根据菱形的性质以及AM=CN,再由ASA可得△AMO≌△CNO,得AO=CO,然后证BO⊥AC,继而可求得∠OBC的度数【解答】解:∵四边形ABCD为菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=28°,∴∠BCA=∠DAC=28°,∴∠OBC=90°﹣28°=62°.故选:C.9.(2023秋•胶州市校级月考)如图,在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接BD,CG.有下列结论:①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④,其中正确的结论有()A.①②③ B.①②④ C.①③④ D.②③④【分析】根据菱形的性质和∠A=60°,可知△ABD是等边三角形,△BDC是等边三角形,根据等边三角形的性质可得∠BFD=∠DEB=90°,∠GDB=∠GBD=30°,即可判断①选项;根据SSS可证△CDG≌△CBG,根据全等三角形的性质可得∠DGC=∠BGC=60°,再根据含30°角的直角三角形的性质可判断②选项;根据△GBC为直角三角形,可知CG>BC,进一步可知CG≠BD,即可判断③选项;根据勾股定理可得DE=AB,再根据三角形面积的求法即可判断④选项.【解答】解:在菱形ABCD中,AB=BC=CD=AD,∵∠A=60°,∴∠BCD=∠A=60°,∴△ABD是等边三角形,△BDC是等边三角形,∴∠ADB=∠ABD=60°,∠CDB=∠CBD=60°,∵E,F分别是AB,AD的中点,∴∠BFD=∠DEB=90°,∴∠GDB=∠GBD=30°,∴∠GDC=∠GBC=90°,DG=BG,∴∠BGD=180°﹣30°﹣30°=120°,故①选项正确;在△CDG和△CBG中,,∴△CDG≌△CBG(SSS),∴∠DGC=∠BGC=60°,∴∠GCD=30°,∴CG=2GD,∵DG=BG,∴CG=DG+BG,故②选项正确;∵△GBC为直角三角形,∴CG>BC,∴CG≠BD,∴△BDF与△CGB不全等,故③选项错误;∵BE=AB,BD=AB,∠DEB=90°,根据勾股定理,得DE=AB,∴S△ABD==,故④选项正确,故正确的有①②④,故选:B.10.(2023春•新抚区期末)如图,点P是菱形ABCD的对角线AC延长线上一点,过点P分别作AD,DC延长线的垂线,垂足分别为点E,F.若∠B=120°,AB=,则PE﹣PF的值为()A.2 B.3 C.4 D.6【分析】连接BD交AC于O,由菱形的性质和勾股定理得OA=3,则AC=6,再由含30°角的直角三角形的性质得PF=CP,则PE﹣PF=(AP﹣CP)=AC,即可得出答案.【解答】解:连接BD交AC于O,如图所示:∵四边形ABCD是菱形,∠ABC=120°,AB=2,∴∠BAD=∠BCD=180°﹣120°=60°,∠DAC=∠DCA=∠BAD=×60°=30°,AD=AB=2,BD⊥AC,在Rt△AOD中,OD=AD=×=,∴OA===3,∴AC=2OA=2×3=6,Rt△APE中,∠DAC=30°,∴PE=AP,在Rt△CPF中,∠PCF=∠DCA=30°,∴PF=CP,∴PE﹣PF=AP﹣CP=(AP﹣CP)=AC=×6=3,故选:B.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2023秋•牡丹区校级月考)如图,菱形ABCD的对角线相交于点O,若AC=24,AB=13,则菱形ABCD的面积是120.【分析】由菱形的性质得AC⊥BD,OA=OC=AC=12,OB=OD=BD,再由勾股定理求出OB,得出BD的长,即可解决问题.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=12,OB=OD=BD,∴∠AOB=90°,∴OB===5,∴BD=2OB=10,∴菱形ABCD的面积=AC•BD=×24×10=120,故答案为:120.12.(2023秋•东明县校级月考)已知菱形的两条对角线长为10cm和24cm,那么这个菱形的周长为52cm,面积为120cm2.【分析】由菱形的性质得AC⊥BD,OA=OC=AC=12(cm),OB=OD=BD,再由勾股定理求出OB,得出BD的长,即可解决问题.【解答】解:如图,∵四边形ABCD是菱形,AC=24cm,BD=10cm,∴AB=BC=CD=AD,AC⊥BD,OA=OC=AC=12(cm),OB=OD=BD=5(cm),∴S菱形ABCD=AC•BD=×24×10=120(cm2),∠AOB=90°,∴AB===13(cm),∴菱形ABCD的周长=4AB=4×13=52(cm),故答案为:52cm,120cm2.13.(2023春•杭州期中)如图,菱形ABCD中,AC,BD相交于O,DE⊥BC于E,连接OE,若∠BAD=40°,则∠ODE的度数为20°.【分析】根据菱形的性质得出∠DAO=BAD=20°,AC⊥BD,DO=BO,AD∥BC,求出DE⊥AD,根据垂直的定义求出∠ADE=90°,∠DEB=90°,求出∠ADO,∠ODE的度数,根据直角三角形斜边上的中线的性质得出OD=OE,求出∠ODE=∠OED即可.【解答】解:∵四边形ABCD是菱形,∠BAD=40°,∴∠DAO=BAD=20°,AC⊥BD,DO=BO,AD∥BC,∴∠DOA=90°,∴∠ADO=90°﹣∠DAO=70°,∵AD∥BC,DE⊥BC,∴DE⊥AD,∴∠ADE=90°,∴∠ODE=∠ADE﹣∠ADO=20°,∵DE⊥BC,∴∠DEB=90°,∵DO=BO,∴OE=BD=OD,∴∠OED=∠ODE=20°,故答案为:20°.14.(2023春•吴中区校级期中)如图,在菱形ABCD中,AB=2,∠A=120°,E,F分别是边AB和CD上的点,EF⊥CD于点F,则线段EF的长度为.【分析】连接AC,BD,根据菱形的性质和等边三角形的性质得出AC,进而得出BD,利用菱形的面积解答即可.【解答】解:连接AC,BD,相交于O,∵四边形ABCD是菱形,AB=2,∠A=120°,∴AB=BC,∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=2,BO=,∴BD=2,∴菱形ABCD的面积=,∴EF=,故答案为:.15.(2023春•集美区校级期中)如图,在菱形ABCD中,∠B=60°,AB=a,点E,F分别是边AB,AD上的动点,且AE+AF=a,则△CEF面积的最小值为.【分析】由在边长为a的菱形ABCD中,易得△ABC、△CAD都是边长为a的正三角形,继而证得△ACE≌△DCF,继而证得△CEF是正三角形,继而可得当动点E运动到点B或点A时,CE的值最大,当CE⊥AB,即E为AB的中点时,EF的值最小,△CEF面积的最小值最小.【解答】解:连接AC、CE、CF,如图所示:∵四边形ABCD是边长为a的菱形,∠B=60°,∴△ABC、△CAD都是边长为a的正三角形,∴AB=BC=CD=AC=AD,∠CAE=∠ACB=∠ACD=∠CDF=60°,∵AE+AF=a,∴AE=a﹣AF=AD﹣AF=DE,在△ACE和△DCF中,,∴△ACE≌△DCF(SAS),∴∠ACE=∠DCF,∴∠ACE+∠ACF=∠DCF+∠ACF,∴∠ECF=∠ACD=60°,∴△CEF是正三角形,∴EF=CE=CF,当动点E运动到点B或点A时,CE的最大值为a,当CE⊥AB,即E为BD的中点时,CE的最小值为a,∵EF=CE,∴EF的最小值为a,∴△CEF面积的最小值为:,故答案为:.16.(2023•温江区校级自主招生)如图,四边形ABCD是菱形,对角线AC,BD交于点O,E是边AD的中点,过点E作EF⊥BD,EG⊥AC,点F,G为垂足,若AC=10,BD=24,则FG的长为6.5.【分析】由菱形的性质得出OA=OC=5,OB=OD=12,AC⊥BD,根据勾股定理求出AD=13,由直角三角形斜边上的中线等于斜边的一半求出OE=6.5,证出四边形EFOG是矩形,得到EO=GF即可得出答案.【解答】解:连接OE,∵四边形ABCD是菱形,∴OA=OC=5,OB=OD=12,AC⊥BD,在Rt△AOD中,AD==13,又∵E是边AD的中点,∴OE=AD=6.5,∵EF⊥BD,EG⊥AC,AC⊥BD,∴∠EFO=90°,∠EGO=90°,∠GOF=90°,∴四边形EFOG为矩形,∴FG=OE=6.5.故答案为:6.5.17.(2023春•南岗区校级期中)如图,在边长为5的菱形ABCD中,∠BAD=60°,点E、点F分别在AD、CD上,且∠EBF=60°,连接EF,若AE=2,则EF的长度为.【分析】连接BD,过E点作EH⊥AB于H点,如图,先根据菱形的性质得到AB=AD=5,AB∥CD,则可判断△ABD为等边三角形,所以BD=AB,∠ABD=60°,再证明∠ABE=∠DBF,∠FDB=∠EAB,则可判断△BDF≌△BAE,所以BF=BE,于是可证明△BEF为等边三角形得到EF=BE,接着利用含30度角的直角三角形三边的关系得到AH=1,EH=,然后利用勾股定理计算出BE,从而得到EF的长.【解答】解:连接BD,过E点作EH⊥AB于H点,如图,∵四边形ABCD为菱形,∴AB=AD=5,AB∥CD,∵∠BAD=60°,∴△ABD为等边三角形,∴BD=AB,∠ABD=60°,∵∠EBF=60°,∴∠ABD﹣∠EBD=∠EBF﹣∠EBD,即∠ABE=∠DBF,∵CD∥AB,∴∠FDB=∠ABD=60°,∴∠FDB=∠EAB,在△BDF和△BAE中,,∴△BDF≌△BAE(ASA),∴BF=BE,而∠EBF=60°,∴△BEF为等边三角形,∴EF=BE,在Rt△AEH中,∵∠A=60°,∴AH=AE=1,∴EH=AH=,在Rt△BEH中,∵EH=,BH=BA﹣AH=5﹣1=4,∴BE==,∴EF=BE=.故答案为:.18.(2023春•鼓楼区校级期中)如图,在菱形ABCD中,AB=6,∠ABC=120°,点E在边BC上(不与端点重合),AE交BD于点F,以EF为边向外作等边△EFG,连接CF,BG,现给出以下结论:①∠EAB=30°;②△ABF≌△CBF;③直线AB与直线DC的距离是9;④BF+BG=BE.其中正确的是②③④(写出所有正确结论的序号).【分析】连接AC,先证明△ABD和△CBD都是等边三角形,再证明△ADC≌△ABC,则∠CAD=∠CAB=30°,假设∠EAB=30°,则∠EAB=∠CAB,所以点E与点C重合,这与已知条件相矛盾,所以∠EAB≠30°,可判断①错误;由AB=CB,∠ABF=∠CBF,BF=BF根据全等三角形的判定定理“SAS”可证明△ABF≌△CBF,可判断②正确;作DI⊥AB于点I,则∠AID=90°,所以∠ADI=30°,则AI=×6=3,可根据勾股定理求得DI=9,可判断③正确;在BC上截取BH=BF,连接FH,则△BFH是等边三角形,而△EFG是等边三角形,可证明△BFG≌△HFE,得BG=HE,所以BF+BG=BH+HE=BE,可判断④正确.【解答】解:如图,连接AC,∵四边形ABCD是菱形,∠ABC=120°,AB=6,∴AD=AB=CD=CB=6,AD∥BC,AB∥CD,∴∠DAB=∠DCB=180°﹣∠ABC=60°,∴△ABD和△CBD都是等边三角形,∴∠ABF=∠CBF=60°,在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠CAD=∠CAB=∠DAB=30°,假设∠EAB=30°,则∠EAB=∠CAB,∴AE与AC重合,点E与点C重合,与已知条件相矛盾,∴假设不成立,即∠EAB≠30°,故①错误;在△ABF和△CBF中,,∴△ABF≌△CBF(SAS),故②正确;作DI⊥AB于点I,则∠AID=90°,∵∠DAI=60°,∴∠ADI=30°,∴AI=AD=×6=3,∴DI===9,∴直线AB与直线DC的距离是9,故③正确;在BC上截取BH=BF,连接FH,则△BFH是等边三角形,∵△EFG是等边三角形,∴FB=FH,FG=FE,∠BFH=∠GFE=60°,∴∠BFG=∠HFE=60°﹣∠GFH,在△BFG和△HFE中,,∴△BFG≌△HFE(SAS),∴BG=HE,∴BF+BG=BH+HE=BE,故④正确,故答案为:②③④.三、解答题(本大题共6小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2023秋•薛城区月考)如图,已知A,F,C,D四点在同一条直线上,AF=CD,AB∥ED,且AB=ED.(1)求证:△ABC≌△DEF.(2)如果四边形EFBC是菱形,已知EF=3,DE=4,∠DEF=90°,求AF的长度.【分析】(1)根据SAS即可证明△ABC≌△DEF;(2)解直角三角形求出DF、OE、OF的长,即可解决问题.【解答】(1)证明:∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AF+FC=CD+FC,即AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).(2)解:如图,连接EB交AD于O.在Rt△EFD中,∠DEF=90°,EF=3,DE=4,∴DF===5,∵四边形EFBC是菱形,∴OF=OC,BE⊥CF,∴EO===,∴OF=OC===,∴CF=2OF=,∴AF=CD=DF﹣FC=5﹣=.20.(2023春•姑苏区校级期中)如图,已知菱形ABCD的对角线AC、BD相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:四边形BECD是平行四边形;(2)若∠E=60°,BD=8,求菱形ABCD的面积.【分析】(1)根据菱形的对边平行且相等可得AB=CD,AB∥CD,然后证明得到BE=CD,BE∥CD,从而证明四边形BECD是平行四边形;(2)欲求菱形ABCD的面积,求得AC、BD的长度即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AB=CD=BC,AB∥CD,又∵BE=AB,∴BE=CD,BE∥CD,∴四边形BECD是平行四边形;(2)解:由(1)知,四边形BECD是平行四边形,则BD∥CE.∵∠E=60°,∴∠ABD=60°.∵四边形ABCD是菱形,∴AD=AB.∴△ABD是等边三角形.∴AB=BD=8.又∵四边形ABCD是菱形,∴AC⊥BD,OB=BD=4.∴OA===4.∴AC=8.∴菱形ABCD的面积=AC•BD=×8×8=32.21.(2023•雨花区校级开学)如图,四边形ABCD是菱形,AE⊥BC于点E,AF⊥CD于点F.(1)求证:△ABE≌△ADF;(2)若AE=4,CF=2,求菱形的面积.【分析】(1)由菱形ABCD的四条边相等、对角相等的性质知AB=AD,∠B=∠D;然后根据已知条件“AE⊥BC,AF⊥CD”知∠AEB=∠AFD;最后由全等三角形的判定定理AAS证明△ABE≌△ADF;(2)由全等三角形△ABE≌△ADF的对应边相等知BE=DF,然后根据菱形的四条边相等求得AB=CD,设AB=CD=x,已知CF=2,则BE=DF=x﹣2,利用勾股定理即可求出菱形的边长,进而可以求菱形的面积.【解答】(1)证明:∵四边形ABCD是菱形,∴AB=BC=CD=AD,∠B=∠D,∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD,在△ABE和△ADF中,,∴△ABE≌△ADF(AAS);(2)解:设菱形的边长为x,∵AB=CD=x,CF=2,∴DF=x﹣2,∵△ABE≌△ADF,∴BE=DF=x﹣2,在Rt△ABE中,根据勾股定理得,AE2+BE2=AB2,即42+(x﹣2)2=x2,解得x=5,∴菱形的边长是5,∴菱形的面积=BC•AE=5×4=20.22.(2023春•南浔区期末)如图,已知四边形ABCD是菱形,点E、F分别是边AB、BC的中点,连结DE、EF、DF.(1)求证:△DEF是等腰三角形;(2)若AD=10,EF=8,求菱形ABCD的面积.【分析】(1)根据菱形的性质得到∠A=∠C,AD=CD=AB=BC,根据全等三角形的性质即可得到结论;(2)连接AC,BD交于O,根据三角形中位线定理得到AC=16,根据菱形的性质得到AO=AC=8,AC⊥BD,根据勾股定理得到OB==6,根据菱形的面积公式即可得到结论.【解答】(1)证明:∵四边形ABCD是菱形,∴∠A=∠C,AD=CD=AB=BC,∵点E、F分别是边AB、BC的中点,∴AE=AB,CF=BC,∴AE=CF,∴△ADE≌△CDF(SAS),∴DE=DF,∴△DEF是等腰三角形;(2)解:连接AC,BD交于O,∵点E、F分别是边AB、BC的中点,∴EF是△ABC的中位线,∵EF=8,∴AC=16,∵四边形ABCD是菱形,∴AO=AC=8,AC⊥BD,∴OB==6,∴BD=12,∴菱形ABCD的面积=AC•BD=×16×12=96.23.(2023春•重庆期末)如图,在菱形ABCD中,∠C=60°,E是对角线BD上一点.(1)如图1,若E是线段BD的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年建筑工程公司与施工方分包合同
- 2024年庆典花卉租赁合同
- 2024年度环保设备生产与安装合同
- 2024年企业间关于虚拟现实技术研发合同
- 2024年度BIM模型能耗分析与优化服务合同
- 2024国有林业企业与农村集体组织土地承包合同
- 2024年家庭遗产分配协议
- 2024年度金融科技合作协议
- 2024酒店布草采购合同
- 2024年度离婚财产分配合同:涉及三个未成年子女的抚养权
- 《三黑和土地》ppt一
- 工商企业管理专业案例分析报告
- 风疹病毒实验活动风险评估报告
- AI人工智能(PPT页)(共37张PPT)
- 中外美术史年表
- 装修改造工程施工劳动力计划及机械设备配置
- 二年级上册道德与法治10《我们不乱扔》说课稿二篇
- 小学苏教版六年级上册数学《分数四则混合运算》市级公开课课件
- 苏州某校苏教版六年级数学上册第四单元《解决问题的策略》教材分析及全部教案(共含3课时)
- 国家开放大学电大本科《社会统计学》2023期末试题及答案(试卷代号:1318)
- 《小鲤鱼跳龙门》教学设计3篇
评论
0/150
提交评论