山东省滨州市滨城区2024届数学八上期末综合测试试题含解析_第1页
山东省滨州市滨城区2024届数学八上期末综合测试试题含解析_第2页
山东省滨州市滨城区2024届数学八上期末综合测试试题含解析_第3页
山东省滨州市滨城区2024届数学八上期末综合测试试题含解析_第4页
山东省滨州市滨城区2024届数学八上期末综合测试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省滨州市滨城区2024届数学八上期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.在解分式方程时,我们第一步通常是去分母,即方程两边同乘以最简公分母(x﹣1),把分式方程变形为整式方程求解.解决这个问题的方法用到的数学思想是()A.数形结合 B.转化思想 C.模型思想 D.特殊到一般2.如图,一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A、B,点C是OA的中点,过点C作CD⊥OA于C交一次函数图象于点D,P是OB上一动点,则PC+PD的最小值为()A.4 B. C.2 D.2+23.若x+m与2﹣x的乘积中不含x的一次项,则实数m的值为(

)A.﹣2

B.2

C.0

D.14.在下列运算中,正确的是()A.(x﹣y)2=x2﹣y2 B.(a+2)(a﹣3)=a2﹣6C.(a+2b)2=a2+4ab+4b2 D.(2x﹣y)(2x+y)=2x2﹣y25.化简的结果为()A. B.a﹣1 C.a D.16.如图,在数轴上表示实数的点可能是().A.点 B.点 C.点 D.点7.华为麒麟990芯片采用了最新的0.000000007米的工艺制程,数0.000000007用科学记数法表示为()A. B. C. D.8.下列各式不能运用平方差公式计算的是()A. B.C. D.9.如图,点A,D,C,F在一条直线上,AB=DE,∠A=∠EDF,下列条件不能判定△ABC≌△DEF的是()A.AD=CF B.∠BCA=∠F C.∠B=∠E D.BC=EF10.如图,已知△ABC中,∠A=75°,则∠BDE+∠DEC=()A.335° B.135° C.255° D.150°二、填空题(每小题3分,共24分)11.当x_____时,分式有意义.12.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=3,则PQ的最小值为_____.13.分解因式:12a2-3b2=____.14.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是_________.15.在Rt△ABC中,∠A=90°,∠C=60°,点P是直线AB上不同于A、B的一点,且PC=4,∠ACP=30°,则PB的长为_____.16.若规定用符号表示一个实数的整数部分,例如按此规定._______________________.17.已知,则__________.18.命题:“三边分别相等的两个三角形全等”的逆命题________三、解答题(共66分)19.(10分)阅读下列材料,然后解答问题:问题:分解因式:.解答:把带入多项式,发现此多项式的值为0,由此确定多项式中有因式,于是可设,分别求出,的值.再代入,就容易分解多项式,这种分解因式的方法叫做“试根法”.(1)求上述式子中,的值;(2)请你用“试根法”分解因式:.20.(6分)如图,于,于,若,.求证:平分.21.(6分)先化简,再求值:,其中,再选取一个合适的数,代入求值.22.(8分)如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.23.(8分)解方程:24.(8分)某商场花9万元从厂家购买A型和B型两种型号的电视机共50台,其中A型电视机的进价为每台1500元,B型电视机的进价为每台2500元.(1)求该商场购买A型和B型电视机各多少台?(2)若商场A型电视机的售价为每台1700元,B型电视机的售价为每台2800元,不考虑其他因素,那么销售完这50台电视机该商场可获利多少元?25.(10分)先化简再求值:若,且,求的值.26.(10分)平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.

参考答案一、选择题(每小题3分,共30分)1、B【详解】解:在解分式方程时,我们第一步通常是去分母,即方程两边同乘以最简公分母(x﹣1),把分式方程变形为整式方程求解.解决这个问题的方法用到的数学思想是转化思想,故选B.【点睛】本题考查解分式方程;最简公分母.2、C【分析】作点C关于y轴的对称点C′,连接C′D交y轴于点P,此时PC+PD取得最小值,利用一次函数图象上点的坐标特征可得出点A的坐标,由点C是OA的中点可得出点C的坐标,由点C,C′关于y轴对称可得出CC′的值及PC=PC′,再利用勾股定理即可求出此时C′D(即PC+PD)的值,此题得解.【详解】解:作点C关于y轴的对称点C′,连接C′D交y轴于点P,此时PC+PD取得最小值,如图所示.当y=0时,﹣1x+4=0,解得:x=1,∴点A的坐标为(1,0).∵点C是OA的中点,∴OC=1,点C的坐标为(1,0).当x=1时,y=﹣1x+4=1,∴CD=1.∵点C,C′关于y轴对称,∴CC′=1OC=1,PC=PC′,∴PC+PD=PC′+PD=C′D=.故选:C.【点睛】本题考查了一次函数图象上点的坐标特征、线段垂直平分线的性质、勾股定理以及轴对称最短路线问题,利用两点之间线段最短,找出点P所在的位置是解题的关键.3、B【解析】根据题意得:(x+m)(2−x)=2x−x2+2m−mx,∵x+m与2−x的乘积中不含x的一次项,∴m=2;故选B.4、C【分析】根据完全平方公式和平方差公式求出每个式子的结果,再判断即可.【详解】解:A、,故本选项错误;B、,故本选项错误;C、,故本选项正确;D、,故本选项错误;故选C.【点睛】本题考查了完全平方公式和平方差公式的应用,注意:完全平方公式:,平方差公式:(a+b)(a-b)=a-b.5、B【解析】分析:根据同分母分式加减法的运算法则进行计算即可求出答案.详解:原式=,=,=a﹣1故选B.点睛:本题考查同分母分式加减法的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.6、B【分析】先确定

是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.【详解】解:∵∴∴表示实数的点可能是E,故选:B.【点睛】本题考查实数与数轴上的点的对应关系,正确判断无理数在哪两个相邻的整数之间是解题的关键.7、A【分析】根据科学记数法绝对值小于1的正数也可以利用科学记数法表示,一般形式为,其中,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】由科学记数法的表示可知,,故选:A.【点睛】科学记数法表示数时,要注意形式中,的取值范围,要求,而且的值和原数左边起第一个不为零的数字前面的0的个数一样.8、C【分析】运用平方差公式时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.【详解】解:、两项都是相同的项,不能运用平方差公式;、、中均存在相同和相反的项,故选:.【点睛】本题考查了平方差公式的应用,熟记公式是解题的关键.9、D【解析】根据全等三角形的判定方法分别进行分析即可.【详解】AD=CF,可用SAS证明△ABC≌△DEF,故A选项不符合题意,∠BCA=∠F,可用AAS证明△ABC≌△DEF,故B选项不符合题意,∠B=∠E,可用ASA证明△ABC≌△DEF,故C选项不符合题意,BC=EF,不能证明△ABC≌△DEF,故D选项符合题意,故选D.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.但是AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10、C【分析】先由三角形内角和定理得出∠B+∠C=180°-∠A=105°,再根据四边形内角和定理即可求出∠BDE+∠DEC=360°-105°=255°.【详解】:∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°-∠A=105°,∵∠BDE+∠DEC+∠B+∠C=360°,∴∠BDE+∠DEC=360°-105°=255°;故答案为:C.【点睛】本题考查了三角形、四边形内角和定理,掌握n边形内角和为(n-2)•180°(n≥3且n为整数)是解题的关键.二、填空题(每小题3分,共24分)11、≠【分析】分母不为零,分式有意义,根据分母不为1,列式解得x的取值范围.【详解】当1-2x≠1,即x≠时,分式有意义.故答案为x≠.【点睛】本题主要考查分式有意义的条件:分式有意义,则分母不能为1.12、1【解析】试题分析:由垂线段最短可知,当PQ与OM垂直的时候,PQ的值最小,根据角平分线的性质可知,此时PA=PQ=1.故答案为1.考点:角平分线的性质;垂线段最短.13、3(2a+b)(2a-b)【解析】12a2-3b2=3(4a2-b2)=3(2a+b)(2a-b);故答案是:3(2a+b)(2a-b)。14、1【分析】画出图形,设菱形的边长为x,根据勾股定理求出周长即可.【详解】当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,

在Rt△ABC中,

由勾股定理:x2=(8-x)2+22,

解得:x=,∴4x=1,

即菱形的最大周长为1cm.

故答案是:1.【点睛】解答关键是怎样放置纸条使得到的菱形的周长最大,然后根据图形列方程.15、1或2【分析】分两种情形分别画出图形即可解问题.【详解】分两种情况讨论:①如图,当点P在线段AB上时.∵∠CAP=90°,∠ACB=60°,∠ACP=30°,∴∠APC=60°,∠B=30°.∵∠APC=∠B+∠PCB,∴∠PCB=∠B=30°,∴PB=PC=1.②当点P'在BA的延长线上时.∵∠P'CA=30°,∠ACB=60°,∴∠P'CB=∠P'CA+∠ACB=90°.∵∠B=30°,P'C=1,∴BP'=2P'C=2.故答案为:1或2.【点睛】本题考查了含30°角的直角三角形,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.16、1【分析】先求出取值范围,从而求出其整数部分,即可得出结论.【详解】解:∵∴∴的整数部分为1∴1故答案为:1.【点睛】此题考查的是求无理数的整数部分,掌握实数比较大小的方法是解决此题的关键.17、-.【分析】,把a+b=-3ab代入分式,化简求值即可.【详解】解:,

把a+b=-3ab代入分式,得

=

=

=

=-.

故答案为:-.【点睛】此题考查分式的值,掌握整体代入法进行化简是解题的关键.18、如果两个三角形全等,那么对应的三边相等【分析】将原命题的条件与结论互换即可得到其逆命题.【详解】∵原命题的条件是:三角形的三边分别相等,结论是:该三角形是全等三角形.∴其逆命题是:如果两个三角形全等,那么对应的三边相等.故答案为如果两个三角形全等,那么对应的三边相等.【点睛】本题考查逆命题的概念,以及全等三角形的判定和性质,解题的关键是熟知原命题的题设和结论.三、解答题(共66分)19、(1),;(2)【分析】(1)先找出一个x的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论;

(2)先找出x=-1时,得出多项式的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论.【详解】解:(1)把带入多项式,发现此多项式的值为0,∴多项式中有因式,于是可设,得出:,∴,,∴,,(2)把代入,多项式的值为0,

∴多项式中有因式,于是可设,∴,,∴,,∴【点睛】此题是分解因式,主要考查了试根法分解因式的理解和掌握,解本题的关键是理解试根法分解因式.20、见解析【分析】证明Rt△BDE≌Rt△CDF,得到DE=DF,即可得出平分.【详解】∵DE⊥AB,DF⊥AC,∴∠E=∠DFC=90°在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HL),∴DE=DF,∴AD平分∠BAC.【点睛】此题考查角平分线的判定定理:在角的内部,到角的两边的距离相等的点在角的平分线上.21、,,【分析】把分式的除法化为乘法运算,再通过通分和约分,进行化简,再代入求值,即可.【详解】原式==,当时,原式==;当x=1时,原式=.【点睛】本题主要考查分式的化简求值,熟练掌握分式的通分和约分,是解题的关键.22、证明见解析.【解析】分析:由全等三角形的判定定理AAS证得△ABC≌△ADC,则其对应边相等.详解:证明:如图,∵∠1=∠2,∴∠ACB=∠ACD.在△ABC与△ADC中,,∴△ABC≌△ADC(AAS),∴CB=CD.点睛:考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.23、(1);(2)无解【分析】(1)两边乘以去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)两边乘以去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)方程两边都乘以去分母得:,

去括号移项合并得:,

解得:,经检验是分式方程的解;(2)方程两边都乘以去分母得:,移项得:,

经检验:时,,∴是分式方程的增根,

∴原方程无解.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.24、(1)该商场购买A型电视机35台,B型电视机15台;(2)销售完这50台电视机该商场可获利11500元.【分析】(1)根据A型、B型两种型号的电视机共50台,共用9万元列出方程组解答即可;(2)算出各自每台的利润乘台数得出各自的利润,再相加即可.【详解】解:(1)设该商场购买A型电视机x台,B型电视机y台,由题意得,解得:答:该商场购买A型电视机35台,B型电视机15台.(2)35×(1700﹣1500)+15×(2800﹣2500)=7000+4500=11500(元)答:销售完这50台电视机该商场可获利11500元.【点睛】本题考查二元一次方程组的应用,根据总

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论