版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省东明县2024届八上数学期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列四个分式中,是最简分式的是()A. B. C. D.2.在平面直角坐标系中,一次函数y=kx﹣6(k<0)的图象大致是()A. B. C. D.3.若(x+4)(x﹣2)=x2+ax+b,则ab的积为()A.﹣10 B.﹣16 C.10 D.﹣64.下列计算中,正确的是()A.x3•x2=x4 B.x(x-2)=-2x+x2C.(x+y)(x-y)=x2+y2 D.3x3y2÷xy2=3x45.下列运算正确的是()A.x3+x3=2x6 B.x2·x4=x8C.(x2)3=x6 D.2x-2=6.若k<<k+1(k是整数),则k=()A.6 B.7 C.8 D.97.已知一次函数y=kx+b的图象经过点(0,﹣1)与(﹣2,0),则不等式kx+b>0的解集是()A.x<﹣2 B.x>﹣2 C.x<﹣1 D.x>﹣18.若点A(m+2,3)与点B(﹣4,n+5)关于x轴对称,则m+n的值()A.﹣14 B.﹣8 C.3 D.79.下列图案属于轴对称图形的是()A. B. C. D.10.如图,直线y=x+m与y=nx﹣5n(n≠0)的交点的横坐标为3,则关于x的不等式x+m>nx﹣5n>0的整数解为()A.3 B.4 C.5 D.611.下列分式中,是最简分式的是().A. B. C. D.12.如图,,,过作的垂线,交的延长线于,若,则的度数为()A.45° B.30° C.22.5° D.15°二、填空题(每题4分,共24分)13.若,则分式的值为____.14.计算:3﹣2=_____.15.一个正n边形的一个外角等于72°,则n的值等于_____.16.已知,则=______.17.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于点E,且AB=6cm,则△DEB的周长是___;18.如图,∠AOB=30°,P是∠AOB的角平分线上的一点,PM⊥OB于点M,PN∥OB交OA于点N,若PM=1,则PN=_________.三、解答题(共78分)19.(8分)为了方便广大游客到昆明参观游览,铁道部门临时增开了一列南宁——昆明的直达快车,已知南宁、昆明两站的路程为828千米,一列普通快车与一列直达快车都由南宁开往昆明,直达快车的平均速度是普通快车平均速度的1.5倍,直达快车比普通快车后出发2小时,而先于普通快车4小时到达昆明,分别求出两车的速度.20.(8分)先阅读下列材料,再解答下列问题:材料:因式分解:.解:将看成整体,令,刚原式.再将“”还原,得原式.上述解题用到的是“整体思想”,这题数学解题中常用的一种思想方法,请你回答下列问题,(1)因式分解:_______;(2)因式分解:;(3)请将化成某一个整式的平方.21.(8分)如图,在平面直角坐标系中,三个顶点的坐标分别是.(1)在图中画出关于轴对称的图形,并写出点C的对应点的坐标;(2)在图中轴上作出一点,使得的值最小(保留作图痕迹,不写作法)22.(10分)某工厂要把一批产品从A地运往B地,若通过铁路运输,则每千米需交运费15元,还要交装卸费400元及手续费200元,若通过公路运输,则每千米需要交运费25元,还需交手续费100元(由于本厂职工装卸,不需交装卸费).设A地到B地的路程为xkm,通过铁路运输和通过公路运输需交总运费y1元和y2元,(1)求y1和y2关于x的表达式.(2)若A地到B地的路程为120km,哪种运输可以节省总运费?23.(10分)倡导健康生活推进全民健身,某社区去年购进A,B两种健身器材若干件,经了解,B种健身器材的单价是A种健身器材的1.5倍,用7200元购买A种健身器材比用5400元购买B种健身器材多10件.(1)A,B两种健身器材的单价分别是多少元?(2)若今年两种健身器材的单价和去年保持不变,该社区计划再购进A,B两种健身器材共50件,且费用不超过21000元,请问:A种健身器材至少要购买多少件?24.(10分)已知,如图,在△ABC中,∠A=∠ABC,直线EF分别交△ABC的边AB,AC和CB的延长线于点D,E,F.(1)求证:∠F+∠FEC=2∠A;(2)过B点作BM∥AC交FD于点M,试探究∠MBC与∠F+∠FEC的数量关系,并证明你的结论.25.(12分)学校为了丰富同学们的社团活动,开设了足球班.开学初在某商场购进A,B两种品牌的足球,购买A品牌足球花费了2400元,购买B品牌足球花费了1600元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌足球多花20元.(1)求所购买的A、B两种品牌足球的单价是多少元?(2)为响应“足球进校园”的号召,决定再次购进A,B两种品牌足球共30个,恰逢商场对两种品牌足球的售价进行调整,A品牌足球售价比第一次购买时提高了10%,B品牌足球按第一次购买时售价的9折出售,如果这所中学此次购买A,B两种品牌足球的总费用不超过2000元,那么此次最多可购买多少个B品牌足球?26.甲、乙两人分别从距离目的地6千米和10千米的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前20分钟到达目的地,求甲、乙的速度.
参考答案一、选择题(每题4分,共48分)1、A【分析】根据最简分式的概念,可把各分式因式分解后,看分子分母有没有公因式.【详解】是最简分式;==x+1,不是最简分式;=,不是最简分式;==a+b,不是最简分式.故选A.【点睛】此题主要考查了最简分式的概念,一个分式的分子与分母没有非零次的公因式时叫最简分式,看分式的分子分母有没有能约分的公因式是解题关键.2、B【分析】一次函数y=kx+b中,k的符号决定了直线的方向,b的符号决定了直线与y轴的交点位置,据此判断即可.【详解】∵一次函数y=kx﹣6中,k<0∴直线从左往右下降又∵常数项﹣6<0∴直线与y轴交于负半轴∴直线经过第二、三、四象限故选:B.【点睛】本题考查了一次函数的图象问题,掌握一次函数图象的性质是解题的关键.3、B【分析】首先利用多项式乘以多项式计算(x+4)(x﹣2),然后可得a、b的值,进而可得答案.【详解】(x+4)(x﹣2)=x2﹣2x+4x﹣8=x2+2x﹣8,∴a=2,b=﹣8,∴ab=﹣1.故选:B.【点睛】本题考查了多项式乘以多项式,关键是掌握多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.4、B【分析】根据同底数幂的乘法、整式的乘法和除法计算即可.【详解】解:A、x3•x2=x5,错误;B、x(x-2)=-2x+x2,正确;C、(x+y)(x-y)=x2-y2,错误;D、3x3y2÷xy2=3x2,错误;故选:B.【点睛】本题考查了同底数幂的乘法、单项式乘多项式、平方差公式和单项式的除法运算,熟练掌握运算法则是解答本题的关键.5、C【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方运算法则和负整数指数幂的运算法则计算各项即得答案.【详解】解:A、x3+x3=2x3≠2x6,所以本选项运算错误;B、,所以本选项运算错误;C、(x2)3=x6,所以本选项运算正确;D、2x-2=,所以本选项运算错误.故选:C.【点睛】本题考查的是合并同类项、同底数幂的乘法、幂的乘方和负整数指数幂等运算法则,属于基础题型,熟练掌握基本知识是解题关键.6、D【分析】找到90左右两边相邻的两个平方数,即可估算的值.【详解】本题考查二次根式的估值.∵,∴,∴.一题多解:可将各个选项依次代入进行验证.如下表:选项逐项分析正误A若×B若×C若×D若√【点睛】本题考查二次根式的估算,找到被开方数左右两边相邻的两个平方数是关键.7、A【分析】写出一次函数图象在x轴上方所对应的自变量的范围即可.【详解】解:∵一次函数y=kx+b的图象经过点(0,﹣1)与(﹣1,0),∴不等式kx+b>0的解集为x<﹣1.故选:A.【点睛】本题考查关于一次函数与一元一次不等式的题目,在解题时,认真体会一次函数与一元一次不等式之间的内在联系,理解一次函数的增减性是解题的关键.8、A【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得m、n的值,再计算m+n即可.【详解】由题意,得m+2=−4,n+5=−3,解得m=−6,n=−1.所以m+n=−2.故答案选:A.【点睛】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.9、C【解析】根据轴对称图形的概念求解.【详解】解:根据轴对称图形的概念知A、B、D都不是轴对称图形,只有C是轴对称图形.故选C.【点睛】轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么就是轴对称图形.10、B【分析】令y=0可求出直线y=nx﹣5n与x轴的交点坐标,根据两函数图象与x轴的上下位置关系结合交点横坐标即可得出不等式x+m>nx﹣5n>0的解,找出其内的整数即可.【详解】解:当y=0时,nx﹣5n=0,解得:x=5,∴直线y=nx﹣5n与x轴的交点坐标为(5,0).观察函数图象可知:当3<x<5时,直线y=x+m在直线y=nx﹣5n的上方,且两直线均在x轴上方,∴不等式x+m>nx﹣5n>0的解为3<x<5,∴不等式x+m>nx﹣5n>0的整数解为1.故选:B.【点睛】此题主要考查函数与不等式的关系,解题的关键是熟知函数图像交点的几何含义.11、D【详解】A选项:=不是最简分式;B选项:=,不是最简分式;C选项:==x-y,不是最简分式;D选项,是最简分式.故选D.点睛:判断一个分式是不是最简分式关键看分子、分母是否有公因式,如果分子分母是多项式,可以先分解因式,以便于判断是否有公因式,从而判断是否是最简分式.12、C【分析】连接AD,延长AC、DE交于M,求出∠CAB=∠CDM,根据全等三角形的判定得出△ACB≌△DCM,求出AB=DM,求出AD=AM,根据等腰三角形的性质得出即可.【详解】解:连接AD,延长AC、DE交于M,
∵∠ACB=90°,AC=CD,
∴∠DAC=∠ADC=45°,
∵∠ACB=90°,DE⊥AB,
∴∠DEB=90°=∠ACB=∠DCM,
∵∠ABC=∠DBE,
∴∠CAB=∠CDM,
在△ACB和△DCM中∴△ACB≌△DCM(ASA),
∴AB=DM,
∵AB=2DE,
∴DM=2DE,
∴DE=EM,
∵DE⊥AB,
∴AD=AM,故选:C.【点睛】本题考查了全等三角形的性质和判定,等腰直角三角形,等腰三角形的性质和判定等知识点,能根据全等求出AB=DM是解此题的关键.二、填空题(每题4分,共24分)13、-2【分析】根据题意得出m+n=2mn,并对分式进行变形代入进行计算和约分,即可求得分式的值.【详解】解:由,可得m+n=2mn,将变形:,把m+n=2mn,代入得到.故答案为:-2.【点睛】本题考查分式的值,能够通过已知条件得到m+n=2mn,熟练运用整体代入的思想是解题的关键.14、.【分析】根据负指数幂的定义直接计算即可.【详解】解:3﹣2=.故答案为.【点睛】本题考查的知识点是负指数幂的计算,任何不等于零的数的-n(n为正整数)次幂,等于这个数的n次幂的倒数,在这个幂的意义中,强调底数不等于零,否则无意义。15、1.【分析】可以利用多边形的外角和定理求解.【详解】解:∵正n边形的一个外角为72°,∴n的值为360°÷72°=1.故答案为:1【点睛】本题考查了多边形外角和,熟记多边形的外角和等于360度是解题的关键.16、25【分析】先根据非负数的性质求出a、b的值,再代入代数式进行计算即可.【详解】∵,∴,,解得,.∴=.故答案为25.【点睛】本题考查了非负数的性质,几个非负数的和为0时,这几个非负数都为0.17、6cm【分析】先利用“角角边”证明△ACD和△AED全等,根据全等三角形对应边相等可得AC=AE,CD=DE,然后求出BD+DE=AE,进而可得△DEB的周长.【详解】解:∵DE⊥AB,
∴∠C=∠AED=90°,
∵AD平分∠CAB,
∴∠CAD=∠EAD,
在△ACD和△AED中,∴△ACD≌△AED(AAS),
∴AC=AE,CD=DE,
∴BD+DE=BD+CD=BC=AC=AE,
BD+DE+BE=AE+BE=AB=6,
所以,△DEB的周长为6cm.
故答案为:6cm.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,等腰直角三角形的性质,熟记性质并准确识图是解题的关键.18、2【分析】过P作PF⊥AO于F,根据平行线的性质可得∠FNP=∠AOB=30°,根据角平分线的性质即可求得PF的长,再根据30度所对的直角边是斜边的一半可求得PN的长.【详解】过P作PF⊥AO于F,∵PN∥OB,∴∠FNP=∠AOB=30°,∵OP平分∠AOB,PM⊥OB于点M,PF⊥OA于F,∴PF=PM=1.∴在Rt△PMF中,PN=2PF=2,故答案为2.【点睛】本题考查了角平分线的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,平行线的性质,熟记性质是解题的关键.三、解答题(共78分)19、慢车46千米/时,快车1千米/时.【解析】设普通快车的平均速度为x千米/时,则直达快车的平均速度为1.5x千米/时,根据“快车用的时间=普通快车用的时间+2+4”,列出分式方程,求解即可得出答案.【详解】解:设普通快车的平均速度为x千米/时,则直达快车的平均速度为1.5x千米/时,根据题意得:,解得:x=46,经检验,x=46是分式方程的解,1.5x=1.5×46=1.答:普通快车的平均速度为46千米/时,则直达快车的平均速度为1千米/时.【点睛】此题考查了分式方程的应用,由实际问题抽象出分式方程,关键是读懂题意,找出题目中的等量关系,根据等量关系列出方程,解方程时要注意检验.20、(1);(2);(3)【分析】(1)令,按照“整体代换”的思想分解因式即可;(2)令,按照“整体代换”的思想分解因式即可;(3)先提取公因式,然后求出,再按照“整体代换”的思想分解因式即可.【详解】(1)令,则∴原式=;(2)令,则=∴原式=;(3)=令,则上式===∴原式=.【点睛】此题主要考查运用整体代换的思想分解因式,熟练掌握,即可解题.21、(1)见解析;(2)见解析【分析】(1)利用轴对称的性质找出A1、B1、C1关于y轴对称点,再依次连接即可;(2)作点C关于x轴的对称点C2,连接B1C2,与x轴交点即为P.【详解】解:(1)如图,△A1B1C1即为所作图形,其中C1的坐标为(-4,4);(2)如图点P即为所作点.【点睛】本题考查了作图—轴对称,最短路径问题,解题的关键在于利用轴对称的性质作出最短路径.22、(1);(2)铁路运输节省总运费.【解析】(1)可根据总运费=每千米的运费×路程+装卸费和手续费,来表示出y1、y2关于x的函数关系式;(2)把路程为120km代入,分别计算y1和y2,比较其大小,然后可判断出哪种运输可以节省总运费.【详解】(1)解:根据题意得:即(2)当x=120时,∵∴铁路运输节省总运费【点睛】本题考查了一次函数的应用,一次函数的应用题常出现于销售、收费、行程等实际问题当中,是常用的解答实际问题的数学模型.23、(1)A,B单价分别是360元,540元;(2)34件.【分析】(1)设A种型号健身器材的单价为x元/套,B种型号健身器材的单价为1.5x元/套,根据“B种健身器材的单价是A种健身器材的1.5倍,用7200元购买A种健身器材比用5400元购买B种健身器材多10件”,即可得出关于x,y的分式方程,解之即可得出结论;(2)设购买A种型号健身器材m套,则购买B种型号的健身器材(50﹣m)套,根据总价=单价×数量结合这次购买两种健身器材的总费用不超过21000元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.【详解】解:(1)设A种型号健身器材的单价为x元/套,B种型号健身器材的单价为1.5x元/套,根据题意,可得:,解得:x=360,经检验x=360是原方程的根,1.5×360=540(元),因此,A,B两种健身器材的单价分别是360元,540元;(2)设购买A种型号健身器材m套,则购买B种型号的健身器材(50﹣m)套,根据题意,可得:360m+540(50﹣m)≤21000,解得:m≥,因此,A种型号健身器材至少购买34套.【点睛】本题考查的知识点是分式方程以及一元一次不等式的实际应用,读懂题意,找出题目中的等量关系式是解此题的关键.24、(1)证明见解析(2)∠MBC=∠F+∠FEC,证明见解析【解析】(1)根据三角形外角的性质,可得出∠FEC=∠A+∠ADE,∠F+∠BDF=∠ABC,再根据∠A=∠ABC,即可得出答案;(2)由BM∥AC,得出∠MBA=∠A,∠A=∠ABC,得出∠MBC=∠MBA+∠ABC=2∠A,结合(1)的结论证得答案即可.【详解】(1)证明:∵∠FEC=∠A+∠ADE,∠F+∠BDF=∠ABC,∴∠F+∠FEC=∠F+∠A+∠ADE,∵∠ADE=∠BDF,∴∠F+∠FEC=∠A+∠ABC,∵∠A=∠ABC,∴∠F+∠FEC=∠A+∠ABC=2∠A.(2)∠MBC=∠F+∠FEC.证明:∵BM∥AC,∴∠MBA=∠A,、∵∠A=∠ABC,∴∠MBC=∠MBA+∠ABC=2∠A,又∵∠F+∠FEC=2∠A,∴∠MBC=∠F+∠FEC.25、(1)购买A种品牌足球的单价为60元/个,购买B种品牌足球的单价为80元/个;(2)此次最多可购买1个B品牌足球.【分析】(1)设A,B两种足球单
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版劳动者劳动社会保险合同(特殊工种)3篇
- 二零二五版水沟施工与承包劳务合同范本2篇
- 二零二五版家政服务公司家政服务与品牌建设合同3篇
- 二零二五版宅基地使用权转让与房屋租赁一揽子合同2篇
- 二零二五版远程办公劳动合同签订与工作质量监控3篇
- 二零二五版办公用品耗材行业联盟采购合同2篇
- 二零二五版旅游租车服务合同范本2篇
- 2025年草原草原生态保护与资源合理利用合同3篇
- 二零二五版家具原料采购合同与供应链管理协议3篇
- 展会市场调研服务合同(2篇)
- 非ST段抬高型急性冠脉综合征诊断和治疗指南(2024)解读
- 产品共同研发合作协议范本5篇
- 风水学的基础知识培训
- 2024年6月高考地理真题完全解读(安徽省)
- 吸入疗法在呼吸康复应用中的中国专家共识2022版
- 1-35kV电缆技术参数表
- 信息科技课程标准测(2022版)考试题库及答案
- 施工组织设计方案针对性、完整性
- 2002版干部履历表(贵州省)
- DL∕T 1909-2018 -48V电力通信直流电源系统技术规范
- 2024年服装制版师(高级)职业鉴定考试复习题库(含答案)
评论
0/150
提交评论