版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
等差数列求和公式等差数列{an}:
通项公式an=a1+(n-1)d首项a1,公差d,项数为nan第n项数【an=a1+(n-1)d】
an=ak+(n-k)dak为第k项数
若a,A,b构成等差数列则A=(a+b)/2
2.等差数列前n项和:
设等差数列{an}的前n项和为Sn
即Sn=a1+a2+...+an;
那么Sn=na1+n(n-1)d/2
=dn^2(即n的2次方)/2+(a1-d/2)n【sn=na1+n(n-1)d/2】还有以下的求和方法:1,不完全归纳法2累加法3倒序相加法等比数列求和公式(1)等比数列:a(n+1)/an=q,n为自然数。
(2)通项公式:an=a1*q^(n-1);
推广式:an=am·q^(n-m);
(3)求和公式:Sn=n*a1(q=1)
Sn=a1(1-q^n)/(1-q)
=(a1-a1q^n)/(1-q)
=a1/(1-q)-a1/(1-q)*q^n(即a-aq^n)
(前提:q不等于1)
(4)性质:
①若m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq;
②在等比数列中,依次每k项之和仍成等比数列.
(5)“G是a、b的等比中项”“G^2=ab(G≠0)”.
(6)在等比数列中,首项A1与公比q都不为零.
注意:上述公式中A^n表示A的n次方。等差数列求和公式
Sn=n(a1+an)/2=na1+n(n-1)d/2
等比数列求和公式
q≠1时Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q)
q=1时Sn=na1
(a1为首项,an为第n项,d为公差,q为公比)1.诱导公式
sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(π2-a)=cos(a)
cos(π2-a)=sin(a)
sin(π2+a)=cos(a)
cos(π2+a)=-sin(a)
sin(π-a)=sin(a)
cos(π-a)=-cos(a)
sin(π+a)=-sin(a)
cos(π+a)=-cos(a)
2.两角和与差的三角函数
sin(a+b)=sin(a)cos(b)+cos(α)sin(b)
cos(a+b)=cos(a)cos(b)-sin(a)sin(b)
sin(a-b)=sin(a)cos(b)-cos(a)sin(b)
cos(a-b)=cos(a)cos(b)+sin(a)sin(b)
tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)
tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)
3.和差化积公式
sin(a)+sin(b)=2sin(a+b2)cos(a-b2)
sin(a)−sin(b)=2cos(a+b2)sin(a-b2)
cos(a)+cos(b)=2cos(a+b2)cos(a-b2)
cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)
4.二倍角公式
sin(2a)=2sin(a)cos(b)
cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)
5.半角公式
sin2(a2)=1-cos(a)2
cos2(a2)=1+cos(a)2
tan(a2)=1-cos(a)sin(a)=sina1+cos(a)
6.万能公式
sin(a)=2tan(a2)1+tan2(a2)
cos(a)=1-tan2(a2)1+tan2(a2)
tan(a)=2tan(a2)1-tan2(a2)
7.其它公式(推导出来的)
a⋅sin(a)+b⋅cos(a)=a2+b2sin(a+c)其中tan(c)=ba
a⋅sin(a)+b⋅cos(a)=a2+b2cos(a-c)其中tan(c)=ab
1+sin(a)=(sin(a2)+cos(a2))2
1-sin(a)=(sin(a2)-cos(a2))2sec在三角函数中表示正割
直角三角形斜边与某个锐角的邻边的比,叫做该锐角的正割,用sec(角)表示。
正割与余弦互为倒数,余割与正弦互为倒数。即:secθ=1/cosθ
在y=secθ中,以x的任一使secθ有意义的值与它对应的y值作为(x,y).在直角坐标系中作出的图形叫正割函数的图像,也叫正割曲线.
y=secθ的性质:
(1)定义域,θ不能取90度,270度,-90度,-270度等值;即θ≠kπ+π/2或θ≠kπ-π/2
(k∈Z,且k=0)
(2)值域,|secθ|≥1.即secθ≥1或secθ≤-1;
(3)y=secθ是偶函数,即sec(-θ)=secθ.图像对称于y轴;
(4)y=secθ是周期函数.周期为2kπ(k∈Z,且k≠0),最小正周期T=2π.英语名词:logarithms
如果a^b=n,那么log(a)(n)=b。其中,a叫做“底数”,n叫做“真数”,b叫做“以a为底的n的对数”。
log(a)(n)函数叫做对数函数。对数函数中x的定义域是x>0,零和负数没有对数;a的定义域是a>0且a≠1。定义:
若a^n=b(a>0且a≠1)
则n=log(a)(b)
基本性质:
1、a^(log(a)(b))=b
2、log(a)(MN)=log(a)(M)+log(a)(N);
3、log(a)(M÷N)=log(a)(M)-log(a)(N);
4、log(a)(M^n)=nlog(a)(M)
推导
1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。
2、MN=M×N
由基本性质1(换掉M和N)
a^[log(a)(MN)]=a^[log(a)(M)]×a^[log(a)(N)]
由指数的性质
a^[log(a)(MN)]=a^{[log(a)(M)]+[log(a)(N)]}
又因为指数函数是单调函数,所以
log(a)(MN)=log(a)(M)+log(a)(N)
3、与(2)类似处理
MN=M÷N
由基本性质1(换掉M和N)
a^[log(a)(M÷N)]=a^[log(a)(M)]÷a^[log(a)(N)]
由指数的性质
a^[log(a)(M÷N)]=a^{[log(a)(M)]-[log(a)(N)]}
又因为指数函数是单调函数,所以
log(a)(M÷N)=log(a)(M)-log(a)(N)
4、与(2)类似处理
M^n=M^n
由基本性质1(换掉M)
a^[log(a)(M^n)]={a^[log(a)(M)]}^n
由指数的性质
a^[log(a)(M^n)]=a^{[log(a)(M)]*n}
又因为指数函数是单调函数,所以
log(a)(M^n)=nlog(a)(M)
基本性质4推广
log(a^n)(b^m)=m/n*[log(a)(b)]
推导如下:
由换底公式(换底公式见下面)[lnx是log(e)(x)e称作自然对数的底]log(a^n)(b^m)=ln(a^n)÷ln(b^n)
由基本性质4可得
log(a^n)(b^m)=[n×ln(a)]÷[m×ln(b)]=(m÷n)×{[ln(a)]÷[ln(b)]}
再由换底公式
log(a^n)(b^m)=m÷n×[log(a)(b)]--------------------------------------------(性质及推导完)\o"返回页首"函数图象[编辑本段]1.对数函数的图象都过(1,0)点.
2.对于y=log(a)(n)函数,
①,当0<a<1时,图象上函数显示为(0,+∞)单减.随着a的增大,图象逐渐以(1,0)点为轴顺时针转动,但不超过X=1.
②当a>1时,图象上显示函数为(0,+∞)单增,随着a的增大,图象逐渐以(1.0)点为轴逆时针转动,但不超过X=1.
3.与其他函数与反函数之间图象关系相同,对数函数和指数函数的图象关于直线y=x对称.\o"返回页首"其他性质[编辑本段]性质一:换底公式
log(a)(N)=log(b)(N)÷log(b)(a)
推导如下:
N=a^[log(a)(N)]
a=b^[log(b)(a)]
综合两式可得
N={b^[log(b)(a)]}^[log(a)(N)]=b^{[log(a)(N)]*[log(b)(a)]}
又因为N=b^[log(b)(N)]
所以b^[log(b)(N)]=b^{[log(a)(N)]*[log(b)(a)]}
所以log(b)(N)=[log(a)(N)]*[log(b)(a)]{这步不明白或有疑问看上面的}
所以log(a)(N)=log(b)(N)/log(b)(a)
公式二:log(a)(b)=1/log(b)(a)
证明如下:
由换底公式log(a)(b)=log(b)(b)/log(b)(a)----取以b为底的对数
log(b)(b)=1=1/log(b)(a)还可变形得:log(a)(b)×log(b)(a)=1整数(Integer)
序列…,-2,-1,0,1,2,…
中的数称为整数.整数的全体构成整数集,它是一个环,记作Z(现代通常写成空心字母Z).环Z的势是阿列夫0.
在整数系中,自然数为正整数,称0为零,称-1,-2,-3,…,-n,…为负整数.正整数,零与负整数构成整数系.常数:chángshù
1.规定的数量与数字。
2.一定的规律。
3.一定之数或通常之数。
4.一定的次序。
5.数学名词。固定不变的数值。如圆的周长和直径的比(π)约为3.1416﹑铁的膨胀系数为0.000012等。不含有未知数的的项就是常数项
比如2X+1中的1就是常数项
常数就是数值不会发生改变的数,是恒定不变的
常数和常数项大部分时候表示的概念差不多的自然数(naturalnumber)
用以计量事物的件数或表示事物次序的数。即用数码0,1,2,3,4,……所表示的数。自然数由0开始,一个接一个,组成一个无穷集体。自然数集有加法和乘法运算,两个自然数相加或相乘的结果仍为自然数,也可以作减法或除法,但相减和相除的结果未必都是自然数,所以减法和除法运算在自然数集中并不是总能成立的。“0”是否包括在自然数之内存在争议,有人认为自然数为正整数,即从1开始算起;而也有人认为自然数为非负整数,即从0开始算起。目前关于这个问题尚无一致意见。不过,在数论中,多采用前者;在集合论中,则多采用后者。目前,我国中小学教材将0归为自然数!
自然数是整数,但整数不全是自然数。
例如:-1-2-3......是整数而不是自然数
总之一句话自然数就是大于等于0的整数
全体非负整数组成的集合称为非负整数集(即自然数集)英语名词:logarithms
如果a^n=b,那么log(a)(b)=n。其中,a叫做“底数”,b叫做“真数”,n叫做“以a为底的b的对数”。
log(a)(n)函数叫做对数函数。对数函数中x的定义域是x>0,零和负数没有对数;a的定义域是a>0且a≠1。定义:若a^n=b(a>0且a≠1)则n=log(a)(b)
基本性质:
1、a^(log(a)(b))=b
2、log(a)(MN)=log(a)(M)+log(a)(N);
3、log(a)(M÷N)=log(a)(M)-log(a)(N);
4、log(a)(M^n)=nlog(a)(M)
\o"返回页首"函数图象
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年宁波市江北区卫生健康系统招聘事业编制工作人员笔试真题
- 监理廉洁制度
- 防灾减灾日活动方案
- Methyl-L-NIO-hydrochloride-生命科学试剂-MCE
- 卖房定金协议书
- Methimazole-Standard-生命科学试剂-MCE
- 小学英语情境化教学课题研究方案
- 教案怎么写书法课程设计
- 教材信息系统课程设计
- 浙教版2021-2022学年度七年级数学上册模拟测试卷 (678)【含简略答案】
- 塑料改性及其产品研发生产二期项目环境影响报告表
- 培训结果调查表模板
- 某建筑企业集团经营理念与目标(5篇)
- 关于收集员工个人信息档案工作的通知-+员工个人信息档案登记表模板
- 地磅拆除施工方案
- 公园广场保洁管理服务投标方案
- 生态环境保护责任清单
- 初中历史《第8课:革命先行者孙中山》课件
- 如何做好小学数学模拟课堂片段教学
- 警察影像-江苏警官学院中国大学mooc课后章节答案期末考试题库2023年
- SMA沥青路面施工工艺及施工技术
评论
0/150
提交评论