版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
4.1.1n次方根与分数指数幂第四章
指数函数与对数函数课程目标1.理解n次方根、根式的概念与分数指数幂的概念;2.掌握分数指数幂和根式之间的互化、化简、求值;3.掌握分数指数幂的运算性质。数学学科素养1.数学抽象:n次方根、根式的概念与分数指数幂的概念;2.逻辑推理:分数指数幂和根式之间的互化;3.数学运算:利用分数指数幂的运算性质化简求值;4.数学建模:通过与初中所学的知识进行类比,得出分数指数幂的概念,和指数幂的性质。
温故知新合作探究归纳总结跟踪训练合作探究归纳总结跟踪训练(1)观察以下式子,并总结出规律:(a>0)结论:当根式的被开方数的指数能被根指数整除时,根式可以表示为分数指数幂的形式.合作探究(2)利用(1)的规律,你能表示下列式子吗?类比总结:当根式的被开方数的指数不能被根指数整除时,根式可以写成分数指数幂的形式.(3)你能用方根的意义解释(2)的式子吗?43的5次方根是75的3次方根是a2的3次方根是a9的7次方根是结果表明:方根的结果与分数指数幂是相通的.综上,我们得到正数的正分数指数幂的意义.3.规定0的正分数指数幂为0,0的负分数指数幂没有意义.1.正数的正分数指数幂的意义:2.正数的负分数指数幂的意义:概念解析自主小测1.用根式表示下列各式:(a>0)
2.用分数指数幂表示下列各式:跟踪训练归纳总结当堂达标1、n次方根和根式的概念。2、3、当n为奇数时,a的n次方根是。当n为偶数时,正数a的n次方根是负数没有偶次方根。0的任何次方根都是0当n是奇数时,当n是偶数时,课堂小结05-3月-244.分数指数概念(a>0,m,n∈N*,n>1)5.有理指数幂运算性质(3)0的正分数指数幂为0,0的负分数指数幂没有意义.《4.1.1
n次方根与分数指数幂》同步练习阅读课本104-106页,思考并完成以下问题(1)n次方根是怎样定义的?(2)根式的定义是什么?它有哪些性质?(3)有理数指数幂的含义是什么?怎样理解分数指数幂?(4)根式与分数指数幂的互化遵循哪些规律?(5)如何利用分数指数幂的运算性质进行化简?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。题型分析举一反三题型一根式的化简(求值)例1求下列各式的值解:
=-8=|-10|=10==解题方法(根式求值)
(2)在对根式进行化简时,若被开方数中含有字母参数,则要注意字母参数的取值范围,即确定
中a的正负,再结合n的奇偶性给出正确结果.题型二分数指数幂的简单计算问题;.例2:求值。解:解题方法(分数指数幂的运算技巧)1.对于既含有分数指数幂,又含有根式的式子,一般把根式统一化成分数指数幂的形式,以便于计算.如果根式中的根指数不同,也应化成分数指数幂的形式.2.对于计算题的结果,不强求统一用什么形式来表示,但结果不能同时含有根号和分数指数,也不能既含有分母又含有负指数.1.计算题型三根式与分数指数幂的互化例3.用分数指数幂的形式表或下列各式(a>0)
;.解:;.解题方法(根式与分数指数幂的互化)(1)根指数化为分数指数的分母,被开方数(式)的指数化为分数指数的分子.(2)在具体计算时,通常会把根式转化成分数指数幂的形式,然后利用有理数指数幂的运算性质解题.答案:C题型四利用分数指数幂的运算性质化简求值例4.
解题方法(利用指数幂的运算性质化简求值的方法)(1)进行指数幂的运算时,一般化负指数为正指数,化根式为分数指数幂
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023-2024学年深圳市教育科学研究院实验学校九年级上学期9月月考数学试题及答案
- 山西省太原市尖草坪区2024年一级造价工程师《土建计量》深度自测卷含解析
- 《食管癌放射治疗》课件
- 图论课件-哈密尔顿图
- 区人大常委会2024年工作要点年度工作计划
- 2024年财务主管工作计划报告
- 下学期园务工作计划
- 小学三年级上册语文教学工作计划
- 学校后勤部门年度工作计划范文
- 教学工作计划范文
- 过程经验教训管理流程(含附表)
- 辛亥革命(共16张PPT)
- 《更换压力表操作》课件
- 家校沟通课件
- 部编版语文八年级下册第三单元知识点梳理
- 2023届中职语文专题复习《现代文阅读答题技巧》课件
- 安全物资培训
- 浙江大学实验报告(流体力学)
- pep人教版英语六年级上册:英语作文汇集
- 茶叶机械化采摘技术规程
- 云南省昆明市盘龙区2022-2023学年九年级上学期期末英语试题
评论
0/150
提交评论