版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
9.1误差修正技术9.1.1系统误差的数字修正方法9.1.2随机误差的数字滤波方法1误差来源有以下几方面:检测系统本身的误差(a)工作原理上,如传感器或电路的非线性的输入、输出关系;(b)机械结构上,如阻尼比太小等;(c)制造工艺上,如加工精度不高,贴片不准,装配偏差等;(d)功能材料上,如热胀冷缩,迟滞,非线性等。3/5/20242外界环境影响例如,温度,压力和湿度等的影响。人为因素操作人员在使用仪表之前,没有调零、校正;读数误差等。3/5/20243误差分类:从时间角度,把误差分为静态误差和动态误差。静态误差包括通常所说的系统误差和随机误差。其中,系统误差是指在相同条件下,多次测量同一量时,其大小和符号保持不变或按一定规律变化的误差。动态误差是指检测系统输入与输出信号之间的差异。3/5/20244由于产生动态误差的原因不同,动态误差又可分为第一类和第二类。第一类动态误差:因检测系统中各环节存在惯性、阻尼及非线性等原因,动态测试时造成的误差。第二类误差:因各种随时间改变的干扰信号所引起的动态误差。针对不同的误差,有不同的修正方法;就是对同一误差,也有多种修正方法。3/5/202459.1.1系统误差的数字修正方法1.利用校正曲线修正系统误差2.用神经网络修正系统误差3.非线性特性的校正方法3/5/202461.利用校正曲线修正系统误差查表法通过实验校准(或称标定)来获得系统的校准曲线(输入、输出关系曲线)。校准:在标准状况下,利用一定等级的标准设备,为系统提供标准的输入量,测试系统的输出。3/5/20247(1)在整个量程范围内,选多点测试;在每个点上,测试多次,由此得出系统的输入、输出数据;
(2)列成表格或绘出曲线;(3)将曲线上各校准点的数据存入存储器的校准表格中;(4)在实际测量时,测一个值,就到微处理器去访问这个地址,读出其内容,即为被测量经修正过的值。3/5/20248内插方法(分段直线拟合)(A)对于值介于两个校准点yi与yi+1之间时,可以按最邻近的一个值yi或yi+1去查找对应的值,作为最后的结果。这个结果带有误差。
(B)
利用分段直线拟合来提高准确度。校准点之间的内插,最简单的是线性内插。3/5/202492.用神经网络修正系统误差3/5/202410传感器模型环境参数误差修正模型的输出即误差修正模型的输出z与被测非电量x成线性关系,且与各环境参数无关。只要使误差修正模型,即可实现传感器静态误差的综合修正。(9.1.2)3/5/202411通常传感器模型及其反函数是复杂的,难以用数学式子描述。但是,可以通过实验测得传感器的实验数据集:根据前向神经网络具有很强的输入、输出非线性映射能力的特点,以实验数据集的和为输入样本,及对应的为输出样本,对神经网络进行训练,使神经网络逐步调节各个权值自动实现3/5/202412归一化处理因神经网络学习时,加在输入端的数据太大,会使神经元节点迅速进入饱和,导致网络出现麻痹现象。此外,由于在神经网络中采用S型函数,输出范围为(0,1),且很难达到0或1。故在学习之前,应对数据进行归一化处理。(9.1.3)(9.1.4)式中,Di、Do分别是欲作为神经网络输入、输出样本的原始数据3/5/202413建立神经网络误差修正模型的步骤:取传感器原始实验数据。由式(9.1.3)变换原始数据和,式(9.1.4)变换原始数据,得训练神经网络的输入、输出样本对。确定神经网络输入、输出端数量、各层节点数、和的值。网络输入端数量与输入层节点数量相同,等于环境参数个数加1。输出端数量与输出层节点数均为1。隐层节点数根据被测非电量、环境参数及传感器输出之间的关系的复杂程度而定,关系复杂取多些,反之取少些。和一般取0~1。训练神经网络得到误差修正模型。3/5/2024143.非线性特性的校正方法传感器和自动检测系统的非线性误差(或称线性度)是一种系统误差,是用其输入、输出特性曲线与拟合直线之间最大偏差与其满量程输出之比来定义的。P17拟合直线:依据若干实验数据,利用一定的数学方法得到的直线。当采用的数学方法不同时,拟合直线不同,以此为基准得出的线性度也不同。3/5/202415输入、输出关系呈线性的优点:可用线性叠加原理,分析、计算方便;输出信号的处理方便,只要知道输出量的起始值和满量程值,就可确定其余的输出值,刻度盘可按线性刻度;在工业过程控制中常用的电动单元组合仪表,由于单元之间用标准信号联系,要求仪表具有线性特性。3/5/202416非线性校正方法利用校准曲线用查表法作修正;利用分段折线法进行校正;用整段高次多项式近似;神经网络的方法。3/5/202417(1)整段校正法整段校正法也称整段多项式近似法,其核心问题是多项式的生成,即直接利用非线性方程进行校正。由标定传感器所得到的实测数据来推出反映输入、输出关系的多项式,并要求这个多项式的次数尽量低、与实际特性的误差尽量小。这实质上是个曲线拟合问题。3/5/202418最小二乘意义下的多项式拟合对于对实验数据使得构造多项式根据最小二乘原理,要使ξ为最小,按通常求极值的方法,取对的偏导数,并令其为零,得到正则方程组,解出ai在实际修正中,预先把方程的系数存在存储器中。单片机进行校正时,将测量值与存储器中的系数进行运算,就可获得实际被测量。3/5/202419(2)神经网络校正法传感器的静态输入、输出特性可用一个多项式表示可简化为实际应用中往往需要根据所得的输出量y,求出输入非电量xi。而由y表示的xi表达式为通过静态标定,事先得到一组传感器的输入、输出数据,然后用函数联接型神经网络,通过迭代得到ki’这些系数。3/5/202420利用输入数据集()和输出yi,经神经网络的学习算法不断调整权值Wn(n=0,1,2,3)。估计输出为误差为权值调整为yi(k)——第i个输入数据的期望输出Wn(k)——网络在第k步的第n个联接权,ai——学习因子经过学习,当权值趋于稳定时,所得的Wn(n=0,1,2,3)就是系数k0’、k1’、k2’、k3’。3/5/202421
智能传感器系统是通过软件来进行非线性刻度转换的,在实现智能化刻度转换功能的同时,也实现了非线性自校正功能,从而改善了系统的静态性能,提高了系统的测量精度。由于软件的灵活性,智能传感器系统丝毫不介意系统前端的正模型有多么严重的非线性。所谓正模型,是传感器及其调理电路的输入输出特性(x-u)。3/5/202422所谓逆模型,是指正模型
u=f(x)的反非线性特性
y=x=f(u) 式中:x为系统的被测输入量;u为传感器及其调理电路的输出量,又是存放在微机中非线性校正器软件模块的输入;y=x为非线性校正器软件模块的输出,也即系统的总输出。3/5/202423(a)智能传感器系统框图;(b)正模型;(c)逆模型;(d)智能传感器系统的输入(x)输出(y)特性3/5/2024244.1.1查表法
查表法是一种分段线性插值法,根据精度要求对反非线性曲线(如后图)进行分段,用若干段折线逼近曲线,将折点坐标值存入数据表中,测量时首先要明确对应输入被测量xi的电压值ui是在哪一段;然后根据那一段的斜率进行线性插值,即得输出值yi=xi。3/5/202425反非线性的折线逼近3/5/202426下面以三段为例,折点坐标值为
横坐标:u1、u2、
u3、u4;
纵坐标:x1、x2、x3、x4。
各线性段的输出表达式为
第Ⅰ段第Ⅱ段第Ⅲ段3/5/202427输出y=x表达式的通式为
(4-3)式中:
k为折点的序数,3条折线有4个折点,k=1,2,3,4。由电压值ui求取被测量xi的程序框图如图4-3所示。3/5/202428图4-3非线性自校正流程图3/5/202429折线与折点的确定有两种方法:Δ近似法与截线近似法,如图4-4所示。不论哪种方法,所确定的折线段与折点坐标值都与所要逼近的曲线之间存在误差Δ,按照精度要求,各点误差Δi都不得超过允许的最大误差界Δm,即Δi≤Δm。3/5/202430图4-4曲线的折线逼近(a)Δ近似法;(b)截线近似法3/5/2024311.Δ近似法
折点处误差最大,折点在±Δm误差界上。折线与逼近的曲线之间的误差最大值为Δm,且有正有负。
2.截线近似法 折点在曲线上且误差最小,这是利用标定值作为折点的坐标值。折线与被逼近的曲线之间的最大误差在折线段中部,应控制该误差值小于允许的误差界Δm。各折线段的误差符号相同,或全部为正,或全部为负。3/5/2024324.1.2曲线拟合法
曲线拟合法采用n次多项式来逼近反非线性曲线,该多项式方程的各个系数由最小二乘法确定,具体步骤如下
1.列出逼近反非线性曲线的多项式方程
(1)对传感器及其调理电路进行静态实验标定,得校准曲线。标定点的数据为3/5/202433n的数值由所要求的精度来定。若n=3,则(4-4)式中:a0、
a1、a2、a3为待定常数。(2)假设反非线性特性拟合方程为3/5/202434(3)求解待定常数a0、a1、a2、a3。根据最小二乘法原则来确定待定常数a0、a1、a2、a3的基本思想是,由多项式方程式(4-4)确定的各个xi(ui)值,与各个点的标定值xi之均方差应最小,即=最小值=F(a0,a1,a2,a3)
(4-5)3/5/202435式(4-5)是待定常数a0、a1、a2、a3的函数。为了求得函数F(a0,a1,a2,a3)最小值时的常数a0、a1、a2、a3,我们对函数求导并令它为零,即3/5/2024363/5/202437经整理后得矩阵方程
(4-6)3/5/202438式中:N为实验标定点个数;通过求解式(4-6)的矩阵方程可得待定常数a0、a1、a2、a3。3/5/2024392.将所求得的常系数a0~a3存入内存
将已知的反非线性特性拟合方程式(4-4)写成下列形式:(4-7)为了求取对应电压为u的输入被测值x,每次只需将采样值u代入式(4-7)中进行三次(b+ai)u
的循环运算,再加上常数a0即可。3/5/2024404.1.3[示例4-1]与铂电阻配用的智能化刻度转换模块的设计(曲线拟合法)
要求
测温范围0~500℃,刻度转换模块的绝对偏差小于0.5℃。
解
(1)在0~500℃范围内从标准分度表中取N=11个标准分度值,如表4-1所示。
表4-1给出了铂电阻Pt100的正模型,即输入(T)输出(R)特性。3/5/2024413/5/202442(2)逆模型的数学表达式设为三阶四项多项式:
T=a0+a1R+a2R2+a3R3 (4-8)
(3)待定常数a0、a1、a2、
a3的确定。
根据式(4-5)、式(4-6)求得a0~a3的数值为
a0=-247.89,a1=2.4077,a2=0.00060253,
a3=1.072×10-6
具有上述常系数数值的式(4-8)的编程算式就成为智能化刻度转换模块。
3/5/202443(4)逆模型的检验。
向逆模型输入电阻R,比较标准分度值的温度T与逆模型计算(输出)值T′,其偏差Δ=T′-T,结果列入表4-2。3/5/202444(5)线性度改善情况的评价。
①改善前测温系统的线性度。
改善前测温系统的线性度由Pt100铂电阻测温传感器的正模型的线性度决定,其最小二乘法线性度求取步骤如下:
拟合直线。由表4-1给出的标准分度关系,根据第2章式(2-9)可计算得到拟合直线的两个常系数k和b,从而最小二乘拟合直线方程为
R=102.169+0.36195T (4-9)3/5/202445最大拟合偏差ΔLm=ΔRm。在0~500℃范围内,式
(4-9)根据温度T计算所得的R(计)与相同温度T由标准分度表给出的R(标)之差即为拟合偏差,该拟合偏差的最大值在零度,|ΔRm|=2.169≈2.17Ω(合温度偏差约7℃)。
最小二乘法线性度。根据第2章式(2-6)的定义式式中,|ΔLm|=|ΔRm|=2.17Ω,为最大拟合偏差。3/5/202446
Y(FS)=R(FS)为满量程输出值,代入测温的上限(500℃)、下限(0℃)值,由式(4-9)可求得R(FS)=R(T=500℃)-R(T=0℃)
=283.144-102.169=180.975Ω,于是得3/5/202447②改善后系统的线性度。
拟合直线。为简单起见,智能传感器系统的拟合直线可选为理想直线方程
T=kT
式中,k=1。
拟合偏差。根据表4-2列出的智能传感器系统输出值T′与系统输入值T应呈线性关系,但却有偏差ΔT=T′-T,从表4-2中可得最大拟合偏差|Δm|=0.27℃。
3/5/202448理论线性度。量程为Y(FS)=500℃-0℃=500℃,理论线性度为与改善前的1.2%相比,经智能化刻度转换模块进行非线性自校正后,全系统线性度提高22倍,非线性误差减小22倍。3/5/202449图4-5智能传感器系统实现自校准功能原理框图第一步:校零第二步:标定第三步:测量3/5/2024509.1.2随机误差的数字滤波方法数字滤波:通过特定的计算程序处理,降低干扰信号在有用信号中的比例,故实质上是一种程序滤波。数字滤波可以对各种干扰信号,甚至极低频率的信号滤波。数字滤波由于稳定性高,滤波器参数修改方便,因此得到广泛应用。3/5/202451数字滤波器优点:(1)不需要增加任何硬设备,只要程序在进入数据处理和控制算法之前,附加一段数字滤波程序即可;(2)不存在阻抗匹配问题;(3)可以对频率很低,例如0.01Hz的信号滤波,而模拟RC滤波器由于受电容容量的影响,频率不能太低;(4)对于多路信号输入通道,可以共用一个滤波器,从而降低仪表的硬件成本。(5)只要适当改变滤波器程序或参数,就可方便地改变滤波特性,这对于低频脉冲干扰和随机噪声的克服特别有效。3/5/202452数字滤波方法1.限幅滤波 2.平滑滤波3.算术平均滤波法4.递推平均滤波法5.加权移动平均滤波法6.一阶惯性滤波7.复合滤波3/5/2024531.限幅滤波当采样信号由于随机干扰而引起严重失真时,可采用限幅滤波。根据经验,确定出两次采样信号可能出现的最大偏差。限幅滤波:把两次相邻的采样值相减,求出其增量(以绝对值表示),然后与两次采样允许的最大差值进行比较。如果小于或等于,则取本次采样值;如果大于,则仍取上次采样值作为采样值。应用:变化比较缓慢的参数测量,如温度、物位等。也可以在大电流、大电感负载切断时,即干扰的特点为时间短,但幅值却很大的情况下使用。3/5/202454中位值滤波中位值滤波是对某一被测量连续采样N次(一般N取为奇数),然后把N次采样值按大小排列,取中间值为本次采样值。中位值滤波能有效地克服偶然因素引起的波动。对于温度、液位等缓慢变化的被测量,采用此法能收到良好的滤波效果,但对于流量、压力等变化较快的被测量一般不宜采用中位值滤波。3/5/2024552.平滑滤波叠加在有用数据上的随机噪声在很多情况下可以近似地认为是白噪声。白噪声具有一个很重要的统计特性,即它的统计平均值为零。因此可以求平均值的办法来消除随机误差,这就是所谓平滑滤波。平滑滤波有以下几种。3/5/2024563.算术平均滤波法算术平均滤波法适用于对一般的具有随机干扰的信号进行滤波。这种信号的特点是信号本身在某一数值范围附近上下波动,如测量流量、液位时经常遇到这种情况。算术平均滤波是要按输入的N个采样数据xi,寻找这样一个y,使y与各采样值之间的偏差的平方和最小,即使3/5/202457由一元函数求极值的原理,可得算术平均滤波的算式
设第i次测量的测量值包含信号成分Si和噪声成分ni,则进行N次测量的信号成分之和为噪声的强度是用均方根来衡量的,当噪声为随机信号时,进行次测量的噪声强度之和为式中,S、n分别为进行N次测量后信号和噪声的平均幅度。3/5/202458对N次测量进行算术平均后的信噪比为式中,S/n是求算术平均值前的信噪比,因此采用算术平均值后,信噪比提高了倍。(9.1.17)由式可知,算术平均值法对信号的平滑滤波程度完全取决于N。当N较大时:平滑度高,但灵敏度低,外界信号的变化对测量计算结果的影响小;当N较小时:平滑度低,但灵敏度高。应按具体情况选取N。如对一般流量测量,可取N=8~12;对压力等测量,可取N=4。3/5/2024594.递推平均滤波法算术平均滤波方法每计算一次数据,需测量N次,对于测量速度较慢或要求数据计算速率较高的实时系统,则无法使用。递推平均滤波法:在存储器中,开辟一个区域作为暂存队列使用,队列的长度固定为N,每进行一次新的测量,把测量结果放入队尾,而扔掉原来队首的那个数据,这样在队列中始终有个“最新”的数据。递推平均项数的选取是比较重要的环节,N选得过大,平均效果好,但是,对参数变化的反应不灵敏;N选得过小,滤波效果不显著。关于N的选择与算术平均滤波法相同。3/5/2024605.加权移动平均滤波法递推平均滤波法最大的问题是随着随机误差的消除,有用信号的灵敏度也降低了。因为我们假设对于N次内的所有采样值,在结果中所占比重是均等的。用这样的滤波算法,对于时变信号会引入滞后。N越大,滞后越严重。为了增加新的采样数据在滑动平均中的比重,以提高系统对当前采样值中所受干扰的灵敏度,可以对不同时刻的采样值加以不同的权,通常越接近现时刻的数据,权取得越大。然后再相加求平均,这种方法就是加权移动平均法。3/5/202461N项加权移动平均滤波算法为为常数,且满足以下条件:常系数的选取有多种方法,其中最常用的是加权系数法。式中,y为第N次采样值经滤波后的输出;
xN-i为未经滤波的第N-i次采样值;3/5/202462加权系数法设τ为被测对象的纯滞后时间,且因为τ越大,δ越小,则给予新的采样值的权系数就越大,而给先前采样值的权系数就越小,从而提高了新的采样值在平均过程中的比重。所以,加权移动平均滤波适用于有较大纯滞后时间常数的被测对象和采样周期较短的测量系统,而对于纯滞后时间常数较小,采样周期较长,变化缓慢的信号,则不能迅速反映系统当前所受干扰的严重程度,滤波效果较差。3/5/2024636.一阶惯性滤波在检测系统的电路中常常伴随有电源干扰及工业干扰,这些干扰特点是频率很低(例如0.01Hz),对这样低频的干扰信号,采用RC滤波显然是不适宜的,因为C太大,很难做到。但是,用数字滤波很容易解决。假设一阶RC滤波器的输入电压为x(t),输出为y(t),则(9.1.24)3/5/202464设采样时间间隔足够小,将式(9.1.24)离散为式中,τ=RC为时间常数。即通过实际运行来确定时间常数τ,不断地计算出τ值,当低频周期性噪声减至最弱时,即为该滤波器的τ值。一阶惯性滤波的缺点:造成信号的相位滞后,滞后相位的大小与Q值有关。如果相位滞后太大,还必须采取其它补救措施。3/5/2024657.复合滤波在实际应用中,所受到的随机扰动往往不是单一的,有时即要消除脉冲扰动的影响,又要作数据平滑。因此,在实际中往往把前面介绍的两种或两种以上的滤波方法结合在一起使用,形成所谓的复合滤波,例如,防脉冲扰动平均值滤波算法就是一种实例。算法的特点:先用中位值滤波算法滤掉采样值中的脉冲干扰,然后把剩下的各采样值进行滑动平均滤波。3/5/202466基本算法如果,其中
x1,xN和分别是所有采样值中的最小值和最大值,则优点:这种滤波方法兼容了滑动平均滤波算法和中位值滤波算法的,无论是对缓慢变化的过程变量,还是快速变化的过程变量,都能起到较好的滤波效果。在一个检测系统中究竟应选用哪种滤波算法,取决于使用场合及过程中所含随机干扰的情况。3/5/2024679.1.3动态补偿方法随着科技生产的发展,对自动检测和仪器仪表提出了更高要求,要求测量一些瞬变的非电量。同时,传感器广泛应用于生产过程的检测,作为控制系统中提供信息的单元,要能迅速反映被控参量的变化,否则,整个控制系统就无法正常工作。在许多生产工艺中,反应速度加快了,设备结构尺寸减小了,即控制对象的时间常数日益减小,这就需要选择快速的检测元件。传感器的阻尼比太小,阶跃响应振荡剧烈,达到稳态的时间长。传感器的工作频带窄,对被测信号中的高频分量没有反应,以致动态响应速度慢。3/5/202468提高传感器动态响应的快速性1、在传感器本身想办法,改变传感器的结构、参数和设计。2、在传感器输出信号的后续处理方面想办法,设计用于动态补偿的模拟或数字滤波器(通常称为动态补偿器),对传感器的信号进行校正,改善其动态性能。进行传感器动态补偿器设计的方法:零极点配置法、系统辨识法神经网络方法等。3/5/202469传感器的动态特性与其传递函数的极点位置密切相关。例如,对于一个属于二阶系统的传感器,其传递函数为1.零极点配置法当动态响应不满足要求时,可在传感器后串接一个补偿器。式中。选择ξ和ω
n来调整新加入的极点位置,而原来的极点将被消去,使传感器的动态特性得以改善。3/5/202470(1)一阶模型的补偿器
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电池制造中的人力资源管理与招聘培训考核试卷
- 海水淡化处理中的关键装备与材料考核试卷
- 植物油加工中的产品研发与创新考核试卷
- 仪器仪表制造业的品牌推广与传播考核试卷
- 区块链在教育中的应用考核试卷
- 春节团圆安全生产的领航者考核试卷
- DB11∕T 1767-2020 再生水利用指南 第1部分:工业
- 黄色梅花课件教学课件
- 谈心交流课件教学课件
- 淮阴工学院《理财规划》2022-2023学年第一学期期末试卷
- 船舶租赁尽职调查
- 统编教学小学语文课外阅读《细菌世界历险记》导读课课件
- 植物生理学-植物的逆境生理
- 【课件】比的基本性质
- 小学英语人教新起点五年级上册Unit3Animalsunit3storytime
- 2023年江苏省淮安市中考化学试卷
- 医疗质量管理与持续改进工作记录
- 小学英语名师工作室工作计划2篇
- 中国旅游嘉兴风土人情城市介绍旅游攻略PPT图文课件
- 出口退税培训课件
- 校外培训机构消防演练方案(精选10篇)
评论
0/150
提交评论