数学-专项17.4勾股定理与网格问题专项提升训练(重难点培优30题)-【】2022-2023学年八年级数学下册尖子生培优必刷题(原版)【人教版】_第1页
数学-专项17.4勾股定理与网格问题专项提升训练(重难点培优30题)-【】2022-2023学年八年级数学下册尖子生培优必刷题(原版)【人教版】_第2页
数学-专项17.4勾股定理与网格问题专项提升训练(重难点培优30题)-【】2022-2023学年八年级数学下册尖子生培优必刷题(原版)【人教版】_第3页
数学-专项17.4勾股定理与网格问题专项提升训练(重难点培优30题)-【】2022-2023学年八年级数学下册尖子生培优必刷题(原版)【人教版】_第4页
数学-专项17.4勾股定理与网格问题专项提升训练(重难点培优30题)-【】2022-2023学年八年级数学下册尖子生培优必刷题(原版)【人教版】_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

【拔尖特训】2022-2023学年八年级数学下册尖子生培优必刷题【人教版】专题17.4勾股定理与网格问题专项提升训练(重难点培优30题)班级:___________________姓名:_________________得分:_______________注意事项:本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、单选题1.(2022春·四川成都·八年级校考期中)如图,每个小正方形的边长为1,若A、B、C是小正方形的顶点,则∠ABC度数为(

)A.60° B.45° C.30° D.20°2.(2022春·山西运城·八年级统考期末)如图,△ABC的顶点A,B,C在边长为1的正方形网格的格点上,则BC边长的高为(

)A.152 B.855 C.43.(2022春·陕西西安·八年级西安市第二十六中学阶段练习)如图,在边长为1的正方形网格中,A、B、C均在正方形格点上,则C点到AB的距离为(

)A.31010 B.2105 C.

4.(2022春·福建莆田·八年级统考期中)如图,边长为1的正方形网格图中,点A,B都在格点上,若AC=4133,则BCA.2133 B.13 C.2135.(2022·八年级单元测试)如图,在由单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.AB、CD、EF B.AB、CD、GH C.AB、EF、GH D.CD、EF、GH6.(2021秋·海南省直辖县级单位·八年级统考期中)如图,在△ABC中,BC=a,AC=b,AB=c,则下列关系正确的是(

)A.a<b<c B.c<a<b C.c<b<a D.b<a<c7.(2022春·江苏南京·八年级校考阶段练习)如图.每个小正方形的边长为1,格点线段ED与CG交于点A,FH与DG交于点B,连接AB.有下列结论①CG⊥ED;②△ABD≅△HBD;③∠CGH=30°;④AC=2.5;⑤∠EAB=∠EFB;⑥△ABD的面积为0.75.其中正确的结论有()A.3个 B.4个 C.5个 D.6个

8.(2022春·安徽·八年级校考期中)如图,网格中每个小正方形的边长均为1,点A,B,C都在格点上,以A为圆心,AB为半径画弧,交最上方的网格线于点D,则CD的长为(

)A.3−1 B.3−5 C.5 9.(2022·全国·八年级专题练习)在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的格点应是()A.点M B.点N C.点P D.点Q10.(2022春·辽宁辽阳·八年级校考阶段练习)如图,正方形网格中,每一小格的边长为1.网格内有△PAB,则∠PAB+∠PBA的度数是(

)A.30° B.45° C.50° D.60°二、填空题11.(2022春·江苏扬州·八年级校考期中)如图,网格中的每个小正方形的边长都是1,点A、B、C是小正方形的顶点,则∠ABC的度数为________°.12.(2022春·江苏苏州·八年级校考期中)如图,在每个小正方形的边长为1的网格中,△ABC

各顶点均在网格的格点上,CD⊥AB于点D,则CD的长为_____.13.(2021春·四川成都·八年级成都外国语学校校考期中)如图,数轴上点A所表示的数为1,点B,C,D是4×4的正方形网格上的格点,以点A为圆心,AD长为半径画圆交数轴于P,Q两点,则P点所表示的数为___________.(可以用含根号的式子表示)14.(2022春·湖北荆州·八年级统考期中)如图,在5×5的网格中,每个小正方形的边长都是1个单位长度,点O,A,B,C在网格的交点(格点)上,点C0,3,在第三象限内的格点上找一点D,使△ABD与△ABC全等,则点D15.(2022春·福建宁德·八年级统考期中)如图,在8×8的方格纸中小正方形的边长为1,△ABC的三个顶点都在小正方形的格点上,下列结论正确的有_____(填写序号).①△ABC的形状是直角三角形;②△ABC的周长是35③点B到AC边的距离是2;④若点D在格点上(不与A重合),且满足S△BCD=S

16.(2022秋·福建厦门·八年级厦门外国语学校校考阶段练习)如图,在小正方形边长为1的方格中,以线段AB、BC、CD为边的三角形的面积为_____.17.(2022秋·重庆武隆·八年级校考期中)如图,每个小正方形的边长为1,在△ABC中,点D为AB的中点,则线段CD的长为________18.(2022春·八年级课时练习)如图所示的网格是正方形网格,每个小正方形的边长均为1,点A,B,C,D都在格点上,则∠DAB+∠CAB的度数是______度.19.(2022春·江苏常州·八年级统考期中)如图,正方形网格中每一个小正方形的边长为1,小正方形的顶点为格点,点A,B,C为格点,点D为AC与网格线的交点,则∠ADB−∠ABD=__________.

20.(2022春·浙江舟山·八年级统考期末)在边长为1的网格图形中,以顶点都是格点的正方形ABCD的边为斜边,向外作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH为正方形,在图1所示的格点图形中,正方形ABCD的边长为26,此时正方形EFGH的面积为52.写出正方形EFGH的面积的所有可能值是__________(不包括52).三、解答题21.(2022春·吉林长春·八年级期末)问题背景:在△ABC中,AB、BC、AC三边的长分别为5、10、13,求这个三角形的面积.佳佳同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC.(即△ABC三个顶点都在小正方形的顶点处).如图①所示,这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上___________;(2)在图②中画△DEF,使DE、EF、DF三边的长分别为2、22、10(3)这个三角形的形状是____________.22.(2022秋·黑龙江哈尔滨·八年级哈尔滨市第四十七中学校考期中)图1、图2分别是10×6的网格,网格中每个小正方形的边长均为1,各个小正方形的顶点叫做格点,A、B

两点在格点上,请在下面的网格中按要求分别画图,使得每个图形的顶点均在格点上.(1)在图1中画一个△ABC,使△ABC为钝角等腰三角形,且△ABC的面积为10;(2)在图2中画一个平行四边形ABEF,使其周长为10+2(3)在图2中连接BF,并直接写出BF的长,BF=_________.23.(2022春·福建漳州·八年级漳州三中校考阶段练习)作图.网格中每个小正方形的边长都是1,(1)在图1网格中作一个直角三角形,使它的三边长都是整数;(2)在图2网格中作一个直角三角形,使它的三边长都是无理数;(3)在图3网格中作一个钝角三角形,使它的面积等于6.24.(2022春·江西吉安·八年级统考期中)图1、图2是两张形状大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,线段AB的端点均在小正方形的顶点上,请仅用无刻度的直尺在网格内完成下列作图:

(1)如图1,请以线段AB为斜边作等腰直角△ABC;(2)如图2,请以线段AB为底边作等腰△ABD,且使得腰长为有理数;25.(2022春·浙江宁波·八年级校联考期中)在如图所示的6×6的网格中,每个小正方形的边长均为1个单位.(1)请你在图1中画一个以格点为顶点,面积为6个平方单位的等腰三角形;(2)请你在图2中画一个以格点为顶点,一条直角边边长为10的直角三角形;(3)请你在图3中画出△ABC的边BC上的高AD,∠ACB的角平分线CE.26.(2022春·山西运城·八年级统考期中)综合与实践【背景介绍】勾股定理是几何学中的明珠,充满着魅力.如图1是著名的赵爽弦图,由四个全等的直角三角形拼成,用它可以证明勾股定理,思路是大正方形的面积有两种求法,一种是等于c2,另一种是等于四个直角三角形与一个小正方形的面积之和,即12ab×4+b−a2【方法运用】千百年来,人们对勾股定理的证明趋之若鹜,其中有著名的数学家,也有业余数学爱好者.向常春在2010年构造发现了一个新的证法:把两个全等的直角三角形△ABC和△DEA如图2放置,其三边长分别为a,b,c,∠BAC=∠DEA=90°,显然BC⊥AD.(1)请用a,b,c分别表示出四边形ABDC,梯形AEDC,△EBD的面积,再探究这三个图形面积之间的关系,证明勾股定理a2(2)【方法迁移】请利用“双求法”解决下面的问题:如图3,小正方形边长为1,连接小正方形的三个顶点,可得△ABC,则AB边上的高为______.(3)如图4,在△ABC中,AD是BC边上的高,AB=4,AC=5,BC=6,设BD=x,求x的值.

27.(2022春·江苏无锡·八年级校联考期中)作图:(1)如图1,△ABC在边长为1的正方形网格中:①画出△ABC关于直线l轴对称的△DEF(其中D、E、F分别是A、B、C的对应点);②直接写出△ABC中AB边上的高=___________.(2)如图2,在四边形ABCD内找一点P,使得点P到AB、BC的距离相等,并且点P到点A、D的距离也相等.(用直尺与圆规作图,不写作法,保留作图痕迹).28.(2022春·江苏无锡·八年级无锡市天一实验学校校考期中)在△ABC中,AB、BC、AC三边的长分别为5,10,13,求这个三角形的面积.小明同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)△ABC的面积为______.(2)若△DEF的三边DE、EF、DF长分别为8,13,17,请在图2的正方形网格中画出相应的△DEF,并求出△DEF的面积为______.(3)在△ABC中,AB=10,AC=3、BC=1,以AB为边向△ABC外作△ABD(D与C在AB异侧),使△ABD为等腰直角三角形,则线段CD29.(2022春·北京昌平·八年级统考期中)数学王老师组织了“探究2”的活动,下面是同学们的探究过程:(1)2到底有多大?

下面是小明探究2的近似值的过程,请补充完整:我们知道面积是2的正方形边长是2,且2>1.4设2由面积公式,可得x2+因为x的值很小,所以x2更小,略去x解得x≈______(保留到0.001),即2≈(2)怎样画出2?下面是小亮探索画2的过程,请补充完整:现在有2个边长为1的正方形,如图(1),请把它们分割后拼成一个新的正方形.要求:画出分割线并在正方形网格中画出拼接成的新正方形.小亮的做法是:设新正方形的边长为xx>0,割补前后图形的面积相等,则x2=2请参考小亮的做法,现有5个边长为1的正方形,如图(3),请把它们分割后拼成一个边长为5的新的正方形,在图(4)中画出即可.30.(2022春·陕西西安·八年级统考期中)(1)问题背景:在△ABC中,AB、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论