




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【压轴必刷】2023年中考数学压轴大题之经典模型培优案专题02半角模型解题策略解题策略模型1:正方形中的半角模型模型2:等腰直角三角形中的半角模型
经典例题经典例题【例1】.(2020·山西晋中·八年级阶段练习)如图所示:已知ΔABC中,∠BAC=90°,AB=AC,在∠BAC内部作∠MAN=45[操作](1)将ΔABM绕点A逆时针旋转90°,使AB边与AC边重合,把旋转后点M的对应点记作点Q,得到ACQ,请在图中画出ΔACQ[探究](2)在1作图的基础上,连接NQ,求证:MN=NQ;[拓展](3)写出线段BM,MN和NC之间满足的数量关系,并简要说明理由.【例2】(2022·全国·九年级专题练习)折一折:将正方形纸片ABCD折叠,使边AB、AD都落在对角线AC上,展开得折痕AE、AF,连接EF,如图1.
(1)∠EAF=°,写出图中两个等腰三角形:(不需要添加字母);(2)转一转:将图1中的∠EAF绕点A旋转,使它的两边分别交边BC、CD于点P、Q,连接PQ,如图2.线段BP、PQ、DQ之间的数量关系为;(3)连接正方形对角线BD,若图2中的∠PAQ的边AP、AQ分别交对角线BD于点M、点N,如图3,则CQBM=(4)剪一剪:将图3中的正方形纸片沿对角线BD剪开,如图4.求证:BM2+DN2=MN2.【例3】(2022·江苏·八年级专题练习)问题情境在等边△ABC的两边AB,AC上分别有两点M,N,点D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.特例探究如图1,当DM=DN时,
(1)∠MDB=度;(2)MN与BM,NC之间的数量关系为;归纳证明(3)如图2,当DM≠DN时,在NC的延长线上取点E,使CE=BM,连接DE,猜想MN与BM,NC之间的数量关系,并加以证明.拓展应用(4)△AMN的周长与△ABC的周长的比为.【例4】.(2020·全国·九年级专题练习)请阅读下列材料:已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45°.探究线段BD、DE、EC三条线段之间的数量关系:(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.培优训练培优训练一、解答题1.(2022·陕西西安·七年级期末)问题背景:如图1,在四边形ABCD中AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明
实际应用:如图2,在新修的小区中,有块四边形绿化ABCD,四周修有步行小径,且AB=AD,∠B+∠D=180°,在小径BC,CD上各修一凉亭E,F,在凉亭E与F之间有一池塘,不能直接到达,经测量得∠EAF=12∠BAD,BE=10米,DF2.(2022·河北邢台·九年级期末)学完旋转这一章,老师给同学们出了这样一道题:“如图1,在正方形ABCD中,∠EAF=45°,求证:EF=BE+DF.”小明同学的思路:∵四边形ABCD是正方形,∴AB=AD,∠B=∠ADC=90°.把△ABE绕点A逆时针旋转到△ADE′的位置,然后证明△AFE≌E′(1)【探究】请你参考小明的解题思路解决下面问题:
如图2,在四边形ABCD中,AB=AD,∠B=∠D=90°,∠EAF=12∠BAD,直接写出EF,BE(2)【应用】如图3,在四边形ABCD中,AB=AD,∠B+∠D=180°,∠EAF=12∠BAD,求证:EF=BE(3)【知识迁移】如图4,四边形ABPC是⊙O的内接四边形,BC是直径,AB=AC,请直接写出PB+PC与AP的关系.3.(2021·重庆·九年级专题练习)将锐角为45°的直角三角板MPN的一个锐角顶点P与正方形ABCD的顶点A重合,正方形ABCD固定不动,然后将三角板绕着点A旋转,∠MPN的两边分别与正方形的边BC、DC或其所在直线相交于点E、F,连接EF.(1)在三角板旋转过程中,当∠MPN的两边分别与正方形的边CB、DC相交时,如图1所示,请直接写出线段BE、DF、EF满足的数量关系;(2)在三角板旋转过程中,当∠MPN的两边分别与正方形的边CB、DC的延长线相交时,如图2所示,请直接写出线段BE、DF、EF满足的数量关系;(3)若正方形的边长为4,在三角板旋转过程中,当∠MPN的一边恰好经过BC边的中点时,试求线段EF的长.4.(2022·全国·八年级课时练习)综合与实践(1)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,则MN,AM,CN的数量关系为.
(2)如图2,在四边形ABCD中,BC∥AD,AB=BC,∠A+∠C=180°,点M、N分别在AD、CD上,若∠MBN=12∠ABC,试探索线段MN、AM、CN(3)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=12∠ABC,试探究线段MN、AM、CN的数量关系为5.(2022·江苏·八年级课时练习)(1)如图①,在四边形ABCD中,AB=AD,∠B=∠D=90°,E,F分别是边BC,CD上的点,且∠EAF=12∠BAD.请直接写出线段EF,BE(2)如图②,在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD上的点,且∠EAF=1(3)在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD所在直线上的点,且∠EAF=12∠BAD.请画出图形(除图②外),并直接写出线段EF,BE6.(2021·辽宁·沈阳市南昌中学(含:西校区、光荣中学)九年级阶段练习)如图,菱形ABCD与菱形EBGF的顶点B重合,顶点F在射线AC上运动,且∠BCD=∠BGF=120°,对角线AC、BD相交于点O.(1)如图1.当点F与点O重合时,直接写出AEFD的值为
(2)当顶点F运动到如图2的位置时,连接CG,CG⊥BG,且CG=BC,试探究CG与DF的数量关系,说明理由,并直接写出直线CG与DF所夹锐角的度数;(3)如图3,取点P为AD的中点,若B、E、P三点共线,且当CF=2时,请直接写出BP的长.7.(2022·江苏·八年级课时练习)如图,CA=CB,CA⊥CB,∠ECF=45°,CD=CF,∠ACD=∠BCF.(1)求∠ACE+∠BCF的度数;(2)以E为圆心,以AE长为半径作弧;以F为圆心,以BF长为半径作弧,两弧交于点G,试探索△EFG的形状?是锐角三形,直角三角形还是钝角三角形?请说明理由.8.(2021·河南平顶山·九年级期中)(1)阅读理解如图1,在正方形ABCD中,若E,F分别是CD,BC边上的点,∠EAF=45°,则我们常常会想到:把△ADE绕点A顺时针旋转90°,得到△ABG.易证△AEF≌,得出线段BF,DE,EF之间的关系为;(2)类比探究如图2,在等边△ABC中,D,E为BC边上的点,∠DAE=30°,BD=1,EC=2.求线段DE的长;(3)拓展应用如图3,在△ABC中,AB=AC=6+2,∠BAC=150°,点D,E在BC边上,∠DAE=75°,若DE是等腰△ADE的腰,请直接写出线段
9.(2022·全国·八年级专题练习)已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E、F.(1)当∠MBN绕B点旋转到AE=CF时(如图1),试猜想AE,CF,EF之间存在怎样的数量关系?请将三条线段分别填入后面横线中:+=.(不需证明)(2)当∠MBN绕B点旋转到AE≠CF(如图2)时,上述(1)中结论是否成立?请说明理由.(3)当∠MBN绕B点旋转到AE≠CF(如图3)时,上述(1)中结论是否成立?若不成立,线段AE,CF,EF又有怎样的数量关系?请直接写出你的猜想,不需证明.10.(2022·江苏·八年级课时练习)如图,在正方形ABCD中,点P在直线BC上,作射线AP,将射线AP绕点A逆时针旋转45°,得到射线AQ,交直线CD于点Q,过点B作BE⊥AP于点E,交AQ于点F,连接DF.(1)依题意补全图形;(2)用等式表示线段BE,EF,DF之间的数量关系,并证明.11.(2022·全国·八年级课时练习)(1)如图,在正方形ABCD中,E、F分别是BC,CD上的点,且∠EAF=45°.直接写出BE、DF、EF之间的数量关系;
(2)如图,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是BC,CD上的点,且∠EAF=12∠BAD(3)如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,延长BC到点E,延长CD到点F,使得∠EAF=12∠BAD12.(2021·辽宁沈阳·一模)(1)思维探究:如图1,点E,F分别在正方形ABCD的边BC,CD上,且∠EAF=45°,连接EF,则三条线段EF,BE,DF满足的等量关系式是;小明的思路是:将△ADF绕点A顺时针方向旋转90°至△ABG的位置,并说明点G,B,E在同一条直线上,然后证明△AEF≌即可得证结论;(只需填空,无需证明)(2)思维延伸:如图2,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC上,点D在点E的左侧,且∠DAE=45°,猜想三条线段BD,DE,EC应满足的等量关系,并说明理由;(3)思维拓广:
如图3,在△ABC中,∠BAC=60°,AB=AC=5,点D,E均在直线BC上,点D在点E的左侧,且∠DAE=30°,当BD=1时,请直接写出线段CE的长.13.(2021·河南安阳·八年级期中)已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:____;(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)14.(2020·四川成都·八年级期末)已知,∠POQ=90∘,分别在边OP,OQ上取点A,B,使OA=OB,过点A平行于OQ的直线与过点B平行于OP的直线相交于点C.点E,F分别是射线OP,OQ上动点,连接CE,CF,(1)求证:OA=OB=AC=BC;(2)如图1,当点E,F分别在线段AO,BO上,且∠ECF=45∘时,请求出线段EF,AE,(3)如图2,当点E,F分别在AO,BO的延长线上,且∠ECF=135∘时,延长AC交EF于点M,延长BC交EF于点N.请猜想线段EN,NM,
15.(2020·江西育华学校八年级阶段练习)问题背景:如图1,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD、DC于E、F.探究图中线段AE,CF,EF之间的数量关系.小李同学探究此问题的方法是:延长FC到G,使探究延伸:如图2,在四边形ABCD中,BA=BC,∠BAD+∠BCD=180°,∠ABC=2∠MBN,∠MBN绕B点旋转,它的两边分别交AD、DC于E、实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等接到行动指令后,舰艇甲向正东方向以75海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以100海里/小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处,且指挥中心观测两舰艇视线之间的夹角为70°,试求此时两舰艇之间的距离.16.(2022·全国·八年级课时练习)如图,△ABC是边长为2的等边三角形,△BDC是顶角为120°的等腰三角形,以点D为顶点作∠MDN=60°,点M、N分别在AB、AC上.(1)如图①,当MN//BC时,则(2)如图②,求证:BM+NC=MN.
17.(2022·全国·八年级课时练习)如图,在四边形ABCD中,∠B=∠D=90°,E,F分别是BC,CD上的点,连接AE,AF,EF.(1)如图①,AB=AD,∠BAD=120°,∠EAF=60°.求证:EF=BE+DF;
(2)如图②,∠BAD=120°,当△AEF周长最小时,求∠AEF+∠AFE的度数;(3)如图③,若四边形ABCD为正方形,点E、F分别在边BC、CD上,且∠EAF=45°,若BE=3,DF=2,请求出线段EF的长度.18.(2022·江苏·八年级课时练习)(1)如图1,在四边形ABCD中,AB=AD,∠BAD=100°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=50°.探究图中线段EF,BE,FD之间的数量关系.小明同学探究的方法是:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论是(直接写结论,不需证明);(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且2∠EAF=∠BAD,上述结论是否仍然成立,若成立,请证明,若不成立,请说明理由;(3)如图3,四边形ABCD是边长为7的正方形,∠EBF=45°,直接写出△DEF的周长.
19.(2022·全国·八年级课时练习)如图,正方形ABCD中,E、F分别在边BC、CD上,且∠EAF=45°,连接EF,这种模型属于“半角模型”中的一类,在解决“半角模型”问题时,旋转是一种常用的分析思路.例如图中△ADF与△ABG可以看作绕点A旋转90°的关系.这可以证明结论“EF=BE+DF”,请补充辅助线的作法,并写出证明过程.(1)延长CB到点G,使BG=,连接AG;(2)证明:EF=BE+DF20.(2021·全国·九年级专题练习)如图1,在菱形ABCD中,AC=2,BD=23,AC,BD相交于点O.(1)求边AB的长;(2)求∠BAC的度数;(3)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF.判断△AEF是哪一种特殊三角形,并说明理由.21.(2020·重庆江津·八年级期中)(1)如图1,在正方形ABCD中,E是AB上一点,G是AD上一点,∠ECG=45°,求证EG=BE+GD.
(2)请用(1)的经验和知识完成此题:如图2,在四边形ABCD中,AG//BC(BC>AG),∠B=90°,AB=BC=12,E是AB上一点,且∠ECG=45°,BE=4,求EG的长?22.(2022·江苏·八年级专题练习)(2020•锦州模拟)问题情境:已知,在等边△ABC中,∠BAC与∠ACB的角平分线交于点O,点M、N分别在直线AC,AB上,且∠MON=60°,猜想CM、MN、AN三者之间的数量关系.方法感悟:小芳的思考过程是在CM上取一点,构造全等三角形,从而解决问题;小丽的思考过程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教部编版一年级语文上册课课练 汉语拼音
- 药物致效机制探索试题及答案
- 灵活应用的临床执业医师考试试题及答案
- 药剂专业综合能力考核试题及答案
- 卫生管理团队管理能力考核试题
- 网络设计师考试的核心能力提升策略试题及答案
- 数列考试题型及答案
- 系统规划与管理师考试内容的核心理解试题及答案
- 教师资格考试信息管理试题及答案
- 药物剂量调整的临床规程试题及答案
- (完整word版)康复科康复临床路径
- 预应力混凝土结构设计原理.pptx
- 钻井防卡手册
- 来料检验指导书铝型材
- 《中国当代文学专题》期末复习题及答案
- MDK5软件入门
- GB∕T 9441-2021 球墨铸铁金相检验
- 工程项目监理常用台账记录表格(最新整理)
- 质量保证体系调查表
- 双胎妊娠指南ppt课件
- Unit 4 Globalization(课堂PPT)
评论
0/150
提交评论