版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年广东省湛江市经开区七年级第一学期期末数学试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如果收入10元记作+10元,那么支出11元记作()A.﹣1 B.+1 C.+11 D.﹣112.下列计算结果为3的是()A.﹣(+3) B.+(﹣3) C.﹣(﹣3) D.﹣|﹣3|3.2023年11月11日零时,据测北京、上海、广州、湛江四个城区的气温分别是﹣6℃、﹣2℃、20℃、22℃,在这四个城市中,气温最低的是()A.北京 B.上海 C.广州 D.湛江4.我国神舟十五号载人飞船于2022年11月30日,在距地面约390000米的轨道上与中国空间站天和核心舱交会对接成功,将390000用科学记数法表示应为()A.3.9×104 B.39×104 C.39×106 D.3.9×1055.单项式﹣x2y的系数是()A. B. C.3 D.﹣36.下列整式中,与−2xy2是同类项的是()A.−2x2y B.3y2x C.−2ab2 D.2axy27.如图所示,下列说法:①∠1就是∠A;②∠2就是∠B;③∠3就是∠C;④∠4就是∠D.其中正确的是()A.① B.①② C.①②③ D.①②③④8.与方程2x=x−1的解相同的方程是()A.x+1=2x B.2x=3x+1 C.3x=4x−1 D.2x−1=x+19.有理数a+b的相反数是()A.a−b B.−a+b C.−a−b D.a+b10.实数m,n和原点O在数轴上的位置如图所示,下列各式中正确的是()A.m>0 B.m+n<0 C.m−n<0 D.mn>0二、填空题(本大题共6小题,每小题3分,满分18分.在每小题给出的四个选项中,只有一项是符合题目要求的.)11.﹣2的倒数是.12.计算:﹣(﹣5)2=.13.计算:360″=°.14.若方程2xk﹣2−1=0是一元一次方程,则k的值是.15.若式子(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x的取值无关,则a2﹣2b﹣3的值等于.16.有一种新运算,规定了x⊗y=3x−2y,小王按规定的法则计算5⊗3=9结果是正确的.请你计算4⊗(−5)=.三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17.计算:7﹣(+8)+(﹣9)﹣(﹣10).18.计算:−22+(−2)2×1+3.19.先化简,再求值:3(a2−2a)+2(3a−a2)−2a2,其中a=−1.20.解方程:2x﹣4=.21.按下列语句分别画图:①点P在直线l上;②直线AB和CD相交于O;③直线a与直线m、n分别相交于M、N两点;④画线段AB,并延长AB到点C,使BC=AB(尺规作图:只保留作图痕迹,不写作法).22.列方程解应用题:某校为了举办科技文化艺术节活动,需制作一批模型,请来师徒两人.已知师傅单独完成需10天,徒弟单独完成需15天.(1)师徒两人合作需要天完成;(2)现由师傅先做1天,再师徒两人合作,问:还需几天可以完成这项工作?23.如图,点B、D在线段AC上.(1)①图中共有条线段;②AB=DB+=AC﹣;(2)若D是线段AC的中点,AD=4BD,AC=8cm,求线段BC的长.24.如图,点O在直线AB上,已知∠1=30°.(1)若∠COE=90°,则∠2=°;(2)若∠COE=2∠2,求∠2的度数;(3)在(2)的条件下,若OD平分∠BOE,求∠COD的度数.25.阅读下面方框内的材料,解答相应的问题:对称式:ㅤㅤ一个含有多个字母的式子中,任意交换两个字母的位置,当字母的取值均不相等,且都不为0时,式子的值都不变,这样的式子叫做对称式.例如:式子abc中任意两个字母交换位置,可得到式子bac,acb,cba,因为abc=bac=acb=cba,所以abc是对称式.而式子a﹣b中字母a,b交换位置,得到式子b﹣a,因为a﹣b≠b﹣a,所以a﹣b不是对称式.问题:(1)给出下列式子:①a+b+c,②a2b,③a2+b2,④b,其中是对称式的是(填序号即可);(2)①写出一个系数为﹣2,只含有字母a,b且次数为8的单项式,使该单项式是对称式;②写出一个只含有字母a,b的三次三项式,使该多项式是对称式;(3)已知A=a2b﹣2b2c+2ac2,B=a2b﹣4b2c,求5A﹣3B,并直接判断所得结果是否是对称式.
参考答案一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如果收入10元记作+10元,那么支出11元记作()A.﹣1 B.+1 C.+11 D.﹣11【分析】根据正负数的意义,收入为正,那么支出为负进行选择即可.解:由题意可知:收入为正,那么支出为负,支出11元记作﹣11元.故选:D.【点评】本题主要考查了正负数的意义,掌握正负数的意义是解题的关键.2.下列计算结果为3的是()A.﹣(+3) B.+(﹣3) C.﹣(﹣3) D.﹣|﹣3|【分析】根据相反数和绝对值的定义即可求解.解:A.﹣(+3)=﹣3,选项A不符合题意;B.+(﹣3)=﹣3,选项B不符合题意;C.﹣(﹣3)=3,选项C符合题意;D.﹣|﹣3|=﹣3,选项D不符合题意;故选:C.【点评】本题主要考查了相反数和绝对值,掌握相反数和绝对值的定义是解题的关键.3.2023年11月11日零时,据测北京、上海、广州、湛江四个城区的气温分别是﹣6℃、﹣2℃、20℃、22℃,在这四个城市中,气温最低的是()A.北京 B.上海 C.广州 D.湛江【分析】对于负数,离原点越远,负数越小,对于正数,离原点越远,正数越大,由此比较即可.解:,∵﹣6<﹣2<20<22,∴气温最低的是北京,故选:A.【点评】本题考查了有理数的大小比较,熟练掌握正负数的大小比较方法是解题的关键.4.我国神舟十五号载人飞船于2022年11月30日,在距地面约390000米的轨道上与中国空间站天和核心舱交会对接成功,将390000用科学记数法表示应为()A.3.9×104 B.39×104 C.39×106 D.3.9×105【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.解:390000=3.9×105.故选:D.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.5.单项式﹣x2y的系数是()A. B. C.3 D.﹣3【分析】直接利用单项式中的数字因数叫做单项式的系数,进而得出答案.解:单项式﹣x2y的系数是:﹣.故选:B.【点评】此题主要考查了单项式,正确把握单项式的系数确定方法是解题关键.6.下列整式中,与−2xy2是同类项的是()A.−2x2y B.3y2x C.−2ab2 D.2axy2【分析】所含字母相同,并且相同字母的指数也相同的项叫做同类项,由此判断即可.解:与−2xy2是同类项的是3y2x,故选:B.【点评】本题考查了同类项,熟知同类项的定义是解题的关键,注意同类项与系数无关,与字母的顺序无关.7.如图所示,下列说法:①∠1就是∠A;②∠2就是∠B;③∠3就是∠C;④∠4就是∠D.其中正确的是()A.① B.①② C.①②③ D.①②③④【分析】根据角的表示方法,结合图形对题目中的四种说法逐一进行判断即可得出答案.解:∵∠1和∠A表示同一个角,∴①正确;∵∠2不能用∠B来表示,∴②不正确;∵∠3不能用∠C来表示,∴③不正确;∵∠4不能用∠D来表示∴④不正确;综上所述:正确的是①.故选:A.【点评】此题主要考查了角的表示方法,熟练掌握角的表示方法是解决问题的关键.8.与方程2x=x−1的解相同的方程是()A.x+1=2x B.2x=3x+1 C.3x=4x−1 D.2x−1=x+1【分析】先解出2x﹣1=1的解,然后代入各选项可得出答案.解:2x=x−1,解得:x=﹣1,将x=﹣1代入各选项可得:A、左边=0,右边=﹣2,左边≠右边,故本选项不符合题意;B、左边=﹣2,右边=﹣2,左边=右边,故本选项符合题意;C、左边=﹣3,右边=﹣5,左边≠右边,故本选项不符合题意;D、左边=﹣3,右边=0,左边≠右边,故本选项不符合题意;故选:B.【点评】本题考查了同解方程,注意:使方程左右两边相等的未知数的值叫方程的解.9.有理数a+b的相反数是()A.a−b B.−a+b C.−a−b D.a+b【分析】只有符号不同的两个数互为相反数,由此计算即可.解:有理数a+b的相反数是﹣a﹣b,故选:C.【点评】本题考查了相反数,熟知相反数的定义是解题的关键.10.实数m,n和原点O在数轴上的位置如图所示,下列各式中正确的是()A.m>0 B.m+n<0 C.m−n<0 D.mn>0【分析】由图可知,m<0<n,且|m|<|n|,由此条件逐一判断选项即可.解:A、由图可知,m<0,故选项A不符合题意;B、由图可知,m<0<n,且|m|<|n|,∴m+n>0,故选项B不符合题意;C、由图可知,m<0<n,∴m﹣n<0,故选项C符合题意;D、由图可知,m<0<n,∴mn<0,故选项D不符合题意;故选:C.【点评】本题考查了实数与数轴的知识点,解题的关键是根据图中的已知条件逐一判断选项.二、填空题(本大题共6小题,每小题3分,满分18分.在每小题给出的四个选项中,只有一项是符合题目要求的.)11.﹣2的倒数是.【分析】根据倒数定义可知,﹣2的倒数是﹣.解:﹣2的倒数是﹣.【点评】主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.12.计算:﹣(﹣5)2=﹣25.【分析】根据幂的运算法则进行计算即可得出答案.解:原式=﹣25.故答案为:﹣25.【点评】本题主要考查有理数乘方的运算,解题的关键是熟记乘方的运算法则.13.计算:360″=0.1°.【分析】根据1度=60分,即1°=60′,1分=60秒,即1′=60″计算即可.解:360″=()′=6′,6′=()°=0.1°,故答案为:0.1.【点评】本题考查了度分秒的换算,熟练掌握度分秒的换算是关键.14.若方程2xk﹣2−1=0是一元一次方程,则k的值是3.【分析】根据一元一次方程的定义得出关于k的方程,求出k的值即可.解:∵方程2xk﹣2−1=0是一元一次方程,∴k﹣2=1,解得k=3.故答案为:3.【点评】本题考查的是一元一次方程的定义,熟知只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程是解题的关键.15.若式子(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x的取值无关,则a2﹣2b﹣3的值等于4.【分析】先利用去括号法则和合并同类项法则进行化简,再根据式子(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x的取值无关,列出关于a,b的方程,求出a,b,再代入所求代数式进行计算即可.解:原式=2x2+ax﹣y+6﹣2bx2+3x﹣5y+1=2x2﹣2bx2+ax+3x﹣5y﹣y+6+1=(2﹣2b)x2+(a+3)x﹣6y+7,∵式子(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x的取值无关,∴2﹣2b=0,a+3=0,解得:a=﹣3,b=1,∴a2﹣2b﹣3=(﹣3)2﹣2×1﹣3=9﹣2﹣3=4,故答案为:4.【点评】本题主要考查了整式的化简求值,解题关键是熟练掌握去括号法则和合并同类项法则.16.有一种新运算,规定了x⊗y=3x−2y,小王按规定的法则计算5⊗3=9结果是正确的.请你计算4⊗(−5)=22.【分析】根据题意得出有理数混合运算的式子,计算出结果即可.解:∵x⊗y=3x−2y,∴4⊗(−5)=3×4﹣2×(﹣5)=12+10=22.故答案为:22.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解题的关键.三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17.计算:7﹣(+8)+(﹣9)﹣(﹣10).【分析】按照正负数的计算法则计算即可.解:原式=7﹣8﹣9+10=(7+10)﹣(8+9)=17﹣17=0.【点评】本题考查了有理数的加减混合运算,按照有理数的加减混合运算计算法则进行计算是解题关键.18.计算:−22+(−2)2×1+3.【分析】先计算乘方,再计算乘法,最后计算加法即可.解:原式=﹣4+4×1+3=﹣4+4+3=3.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.19.先化简,再求值:3(a2−2a)+2(3a−a2)−2a2,其中a=−1.【分析】根据去括号法则和合并同类项法则进行化简,然后把a的值代入化简后的式子进行计算即可.解:原式=3a2﹣6a+6a﹣2a2﹣2a2=3a2﹣2a2﹣2a2+6a﹣6a=﹣a2,当a=﹣1时,原式=﹣(﹣1)2=﹣1.【点评】本题主要考查了整式的化简求值,解题关键是熟练掌握去括号法则和合并同类项法则.20.解方程:2x﹣4=.【分析】根据一元一次方程的解法,依次进行去分母、去括号、移项、合并同类项、系数化为1进行计算即可.解:去分母,得3(2x﹣4)=2﹣x,去括号,得6x﹣12=2﹣x,移项,得6x+x=2+12,合并项,得7x=14,系数化为1,得x=2.【点评】本题考查解一元一次方程,掌握一元一次方程的解法,依次经过去分母、去括号、移项、合并同类项、系数化为1是正确解答的关键.21.按下列语句分别画图:①点P在直线l上;②直线AB和CD相交于O;③直线a与直线m、n分别相交于M、N两点;④画线段AB,并延长AB到点C,使BC=AB(尺规作图:只保留作图痕迹,不写作法).【分析】根据几何语言画出对应的几何图形.解:①如图1,②如图2,③如图3,④如图4.【点评】本题考查了作图﹣复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.22.列方程解应用题:某校为了举办科技文化艺术节活动,需制作一批模型,请来师徒两人.已知师傅单独完成需10天,徒弟单独完成需15天.(1)师徒两人合作需要6天完成;(2)现由师傅先做1天,再师徒两人合作,问:还需几天可以完成这项工作?【分析】(1)将整个工程看作单位“1”,然后列式计算即可;(2)设还需x天可以完成这项工作,将整个工程看作单位“1”,列出方程进行计算即可.解:(1)=6(天).故答案为:6.(2)设还需x天可以完成这项工作,根据题意得,,解得:x=5(天),答:还需5天可以完成这项工作.【点评】本题主要考查了一元一次方程的应用,解题的关键是根据题意列出算式或方程,准确计算.23.如图,点B、D在线段AC上.(1)①图中共有6条线段;②AB=DB+DA=AC﹣BC;(2)若D是线段AC的中点,AD=4BD,AC=8cm,求线段BC的长.【分析】(1)①根据线段有两个端点,写出所有的线段即可得到答案;②根据图中的线段间的数量关系来解答.(2)根据中点的定义和图中的线段间的数量关系来解答.解:(1)①图中线段有:线段AD、线段AB、线段AC、线段DB、线段DC、线段BC,故答案为:6;②AB=DB+DA=AC﹣BC,故答案为:DA,BC.(2)设BD=xcm,因为AD=4BD,所以AD=4x;因为D是线段AC的中点,所以CD=AD=4x;所以AC=8x=8,所以x=1.所以BC=4x﹣x=3x=3.答:线段BC的长为3cm.【点评】本题考查了两点间的距离,解题的关键是线段的定义和线段间的数量关系来解答.24.如图,点O在直线AB上,已知∠1=30°.(1)若∠COE=90°,则∠2=60°;(2)若∠COE=2∠2,求∠2的度数;(3)在(2)的条件下,若OD平分∠BOE,求∠COD的度数.【分析】(1)先根据平角的定义求出∠1+∠cOC+∠3的和,然后根据已知角的度数即可求出∠2的度数;(2)根据∠1的度数求出∠BOE的度数,然后根据∠COE=2∠2即可求出∠2的度数;(3)先在(2)的条件下求出∠BOD的度数,用∠BOD的度数减去∠2的度数就是∠COD的度数.解:(1)∵点O在直线AB上,∴∠1+∠COC+∠3=180°,又∵∠1=30°.∠COE=90°,∴∠2=180°﹣30°﹣90°=60°.故答案为:60.(2)∵∠1+∠BOE=180°,∠1=30°,∴∠BOE=180°﹣∠1=180°﹣30°=150°,又∵∠COE=2∠2,∴∠BOE=3∠2,∴∠2=∠BOE=150°=50°;(3)∵OD平分∠BOE,∠BOE=150°,∴∠BOD=∠BOE=150°=75°,∵∠2=50°,∴∠COD=∠BOD﹣∠2=75°﹣50°=25°.【点评】本题主要考查角的计算和角平分线定义,熟练掌握角的计算方法是解决问题的关键.25.阅读下面方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 32波的描述课件高二上学期物理人教版选择性
- 人教部编版语文二年级上册第19课《古诗二首》精美课件
- 货物采购合同仲裁
- DB14T 2562-2022草地资源无人机监测技术规程
- 中班主题活动教案:我能保护我自己
- 4 小数的意义和性质 教案2023-2024学年四年级下册数学(人教版)
- 《论美术教育在促进学生心理的发展中的作用》2600字
- 大班音乐游戏活动教案《滑稽的脚先生》
- 中班音乐活动教案:猪小弟
- 大班艺术教案:快乐的小乌龟
- 混合机大数据分析与预测性维护
- 东营港加油、LNG加气站工程环评报告表
- 数字化影视制作流程策划书
- 《物联网单片机应用与开发》课程标准(含课程思政)
- 电源适配器方案
- 人民银行征信报告样板
- 全国民用建筑工程设计技术措施节能专篇-暖通空调动力
- 中国急诊重症肺炎临床实践专家共识课件
- 辽宁省2023年高中学业水平合格性考试语文试卷真题(答案详解)
- 投资管理的项目投资和项目管理
- 2024年度医院心血管内科护士长述职报告课件
评论
0/150
提交评论