版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.四面体ABCD四个面的重心分别为E、F、G、H,那么四面体EFGH的外表积与四面体ABCD的外表积的比值是〔〕A)B)C)D)
如图,连接AF、AG并延长与BC、CD相交于M、N,
由于F、G分别是三角形的重心,
所以M、N分别是BC、CD的中点,
且AF:AM=AG:AN=2:3,
所以FG:MN=2:3,
又MN:BD=1:2,所以FG:BD=1:3,
即两个四面体的相似比是1:3,
所以两个四面体的外表积的比是1:9;应选C.如图,平面α∥平面β∥平面γ,两条直线l,m分别与平面α,β,γ相交于点A,B,C和点D,E,F.AC=15cm,DE=5cm,AB︰BC=1︰3,求AB,BC,EF的长设平面α‖β,A、C∈α,B、D∈β直线AB与CD交于S,假设AS=18,BS=9,CD=34,那么CS=?68/3或68与空间四边形ABCD四个顶点距离相等的平面共有多少个?七个你可以把它想象成一个三棱锥四个顶点各对应一个有四个,两条相对棱对应一个共三组相对棱因此有三个总共有七个如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,BD=2AD=8,AB=2DC=。〔1〕设M是PC上的一点,证明:平面MBD⊥平面PAD;
〔2〕求四棱锥P-ABCD的体积解:〔1〕证明:在中,由于,,,
所以
故
又平面平面,平面平面,
平面,
所以平面,
又平面,
故平面平面。〔2〕过作交于O,
由于平面平面,
所以平面
因此为四棱锥的高,
又是边长为4的等边三角形
因此
在底面四边形中,,,
所以四边形是梯形,
在中,斜边边上的高为,
此即为梯形的高,
所以四边形的面积为
故。〔2008福建〕(6)如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,那么BC1与平面BB1D1DA. B. C. D..〔15〕如图,二面角的大小是60°,线段.,与所成的角为30°.那么与平面所成的角的正弦值是.19.〔本小题总分值12分〕如图,直三棱柱ABC-A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD。〔1〕证明:DC1⊥BC;〔2〕求二面角A1-BD-C1的大小。【解析】〔1〕在中,,得:,同理:,得:。又DC1⊥BD,,所以平面。而平面,所以。〔2〕解法一:〔几何法〕由面。取的中点,连接,。因为,所以,因为面面,所以面,从而,又DC1⊥BD,所以面,因为平面,所以。由,BD⊥DC1,所以为二面角A1-BD-C1的平面角。设,,那么,, 在直角△,,,所以。因此二面角的大小为。(2007)2、(北京市西城区2012年4月高三抽样测试)以下四个正方体图形中,为正方体的两个顶点,分别为其所在棱的中点,能得出平面的图形的序号是〔〕A.=1\*GB3①、=3\*GB3③B.=1\*GB3①、=4\*GB3④C.=2\*GB3②、=3\*GB3③D.=2\*GB3②、=4\*GB3④答案:B3、(吉林省吉林市2012届上期末)三棱锥P—ABC的高PO=8,AC=BC=3,∠ACB=30°,M、N分别在BC和PO上,且CM=x,PN=2CM,试问下面的四个图像中哪个图像大致描绘了三棱锥N—AMC的体积V与x的变化关系〔〕〔〕答案:AABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP∥GH.平面α过正方形ABCD-A1B1C1D1的三个顶点B,D,A1,α与底面A1B1C1D1的交线为L,那么L与B1D1的位置关系?如图,正方形ABCD与正方形ABEF所在平面相交于AB,在AE,BD上各有一点P,Q,且AP=DQ。求证:PQ∥面BCE4以下各图是正方体或正四面体,P,Q,R,S分别是所在棱的中点,那么四个点不共面的一个图是().空间三条直线,其中一条和其他两条都相交,那这三条直线中的两条能确定的平面个数是多少假设三条直线只有一个交点,那么可以确定一个或三个平面;假设这三条直线有两个不同的交点,那么可以确定一个或三个平面。假设这三条直线有三个不同的交点,那么可确定以一个平面。答案:一个或三个线面平行的判定定理证明线面平行的判定定理是:假设平面外的一条直线与平面内的一条直线平行,那么这条直线与这个平面平行。
线面平行的定义是:假设直线与平面没有公共点,那么称此直线与该平面平行。
证明:设直线a‖直线b,a不在平面α内,b在平面α内。用反证法证明a‖α。
假设直线a与平面α不平行,那么由于a不在平面α内,有a与α相交,设a∩α=A。
那么点A不在直线b上,否那么a∩b=A与a‖b矛盾。
过点A在平面α内作直线c‖b,由a‖b得a‖c。
而A∈a,且A∈c,即a∩c=A,这与a‖c相矛盾。
于是假设错误,故原命题正确。〔反证法〕例题2从正方体的棱和各个面上的对角线中选出k条,使得其中任意两条线段所在直线都是异面直线,求k的最大值.解答考察如下图的正方体上的四条线段AC,BC1,D1B1,A1D,它们所在直线两两都是异面直线.又假设有5条或5条以上两两异面的直线,那么它们的端点相异且个数不少于10,与正方体只有8个顶点矛盾.故K的最大值是4.练习1在正方体的8个顶点、12条棱的中点、6个面的中心及正方体的中心共计27个点中,问共线的三点组的个数是多少解答两端点都为顶点的共线三点组共有个;两端点都为面的中心共线三点组共有个;两端点都为各棱中点的共线三点组共有个,且没有别的类型的共线三点组,所以总共有个.例题3在单位正方体ABCD-A1B1C1D1的面对角线A1B上存在一点P使得AP+D1P最短,求AP+D1P解答将等腰直角三角形AA1B沿A1B折起至,使三角形与四边形A1BCD1共面,联结,那么的长即为AP+D1P的最小值,所以,练习3单位正方体ABCD-A1B1C1D1的对棱BB1、D1上有两个动点E、F,BE=D1F=〔〕.设EF与AB所成的角为,与BC所成的角为,求的最小值.解答当时,.不难证明是单调减函数.因此的最小值为.例十七、〔2000年全国联赛一试〕一个球与正四面体的六条棱都相切,假设正四面体的棱长为,那么这个球的体积是.分析:由正四面体的图象的对称性可知,内切球的球心必为正四面体的中心,球与各棱相切,其切点必为各棱中点,考查三组对棱中点的连线交于一点,即为内切球的球心,所以每组对棱间的距离即为内切球的直径,于是有:ROEDCROEDCAPB练习:同样可用体积法求出棱长为的正四面体的外接球和内切球的半径.分析可知,正四面体的内切球与外接球球心相同,将球心与正四面体的个顶点相连,可将正四面体划分为四个全等的正三棱锥,于是可知内切球的半径即为正四面体高度的四分之一,外接球半径即为高度的四分之三.故只要求出正四面体的高度即可.又:,所以,.例二十三、〔1991年全国联赛一试〕设正三棱锥P—ABC的高为PO,M为PO的中点,过AM作与棱BC平行的平面,将三棱锥截为上、下两个局部,试求此两局部的体积比.FEOFEOMDCBAPHG所作的平行于BC的平面交平面PBC于EF,由直线与平面平行的性质定理得:EF∥BC,连接AE,AF,那么平面AEF为符合要求的截面.作OH∥PG,交AG于点H,那么:OH=PG.;故:;于是:.8、如果空间三条直线a,b,c两两成异面直线,那么与a,b,c都相交的直线有(A)0条(B)1条(C)多于1的有限条(D)无穷多条解:在a、b、c上取三条线段AB、CC、AD,作一个平行六面体ABCD—ABCD,在c上取线段AD上一点P,过a、P作一个平面,与DD交于Q、与CC交于R,那么QR∥a,于是PR不与a平行,但PR与a共面.故PR与a相交.由于可以取无穷多个点P.应选D.3.设四棱锥的底面不是平行四边形,用平面去截此四棱锥,使得截面四边形是平行四边形,那么这样的平面()(A)不存在(B)只有1个(C)恰有4个(D)有无数多个例一、〔1991年全国联赛一试〕由一个正方体的三个顶点所能构成的正三角形的个数为〔A〕4;〔B〕8;〔C〕12;〔D〕24.分析:一个正方体一共有8个顶点,根据正方体的结构特征可知,构成正三角形的边必须是正方体的面对角线.考虑正方体的12条面对角线,从中任取一条可与其他面对角线构成两个等边三角形,即每一条边要在构成的等边三角形中出现两次,故所有边共出现次,而每一个三角形由三边构成,故一共可构成的等边三角形个数为个.例1在桌面上放着四个两两相切、半径均为r的球,试确定其顶端离桌面的高度;并求夹在这四个球所组成图形空隙中与四个球均相切的小球的半径.(2012重庆)9.设四面体的六条棱的长分别为1,1,1,1,和,且长为的棱与长为的棱异面,那么的取值范围是〔A〕A.B.C.D.〔2010全国〕(6)直三棱柱中,假设,,那么异面直线与所成的角等于〔C〕(A)30°(B)45°(C)60°(D)90°6.C【命题意图】本小题主要考查直三棱柱的性质、异面直线所成的角、异面直线所成的角的求法.【解析】延长CA到D,使得,那么为平行四边形,就是异面直线与所成的角,又三角形为等边三角形,过正方体ABCD-A1B1C1D1的顶点A作直线a,使a与棱AB,AD,AA1所在直线所成的角都相等,这样的直线aA)1条B〕2条C〕3条D〕4条(2010重庆)〔9〕到两互相垂直的异面直线的距离相等的点(D)〔A〕只有1个〔B〕恰有3个〔C〕恰有4个〔D〕有无穷多个11.如图,M是正方体的棱的中点,给出以下命题=1\*GB3①过M点有且只有一条直线与直线、都相交;=2\*GB3②过M点有且只有一条直线与直线、都垂直;=3\*GB3③过M点有且只有一个平面与直线、都相交;=4\*GB3④过M点有且只有一个平面与直线、都平行.其中真命题是:A.=2\*GB3②=3\*GB3③=4\*GB3④B.=1\*GB3①=3\*GB3③=4\*GB3④C.=1\*GB3①=2\*GB3②=4\*GB3④D.=1\*GB3①=2\*GB3②=3\*GB3③如图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小班社会教案:找找好朋友
- 二下数学导学案4认识时分 苏教版
- 中班音乐游戏教案《快乐的小面条》
- 一年级下册数学导学案-第7单元 找规律第4课时 找规律-变化规律|人教新课标
- 山西省大同市2024-2025学年高一年级上学期期中教学质量检测语文试题
- 小班游戏教案:小青蛙跳荷叶
- 教育教学个案研究案例分析
- 腔引流管患者的护理
- 湖北汽车工业学院科技学院《应用统计学》2022-2023学年第一学期期末试卷
- 湖北汽车工业学院《外贸实务2》2022-2023学年第一学期期末试卷
- 电加热设备安全检查表
- 如何应对压力下的时间管理
- (2024版)小学六年级数学空间与图形培养立体思维
- 京东管理者手册
- 生理学全套课件
- 辽宁六地红色文化
- 防范暴风雨和台风的基本常识
- 工业与民用配电设计:第四版手册
- 《国际经济法案例》课件
- 陪诊项目计划书
- 纪检案件审理培训课件
评论
0/150
提交评论