版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
八年级数学试题一、选择题(本题共8小题,每小题3分,共24分)1.4的平方根是()A.2 B. C. D.2.下列各数是无理数的是()A.0 B. C. D.3.143.点关于y轴对称点的坐标为()A. B. C. D.4.如图,AC和BD相交于O点,若,用“SAS”证明还需()A. B. C. D.5.若一次函数的函数值y随x增大而增大,则()A. B. C. D.6.如图,把一张长方形的纸按图那样折叠后,B,C两点落在,处,若,则()A.70° B.60° C.65° D.55°7.物理课上小刚在探究弹簧测力计的“弹簧的长度与受到的拉力之间的关系”时,在弹簧的弹性限度内,通过实验获得下面的一组数据.在弹簧的弹性限度内,若拉力为7.5N,则弹簧长度为()拉力/N0123456弹簧长度/cm10.012.014.016.018.020.022.0A.24cm B.25cm C.25.5cm D.26cm8.如图,点,点,线段AB平移后得到线段,若点,点,则的值是()A. B. C.2 D.4二、填空题(本题共10小题,每小题3分,共30分)9.若有意义,则x的取值范围是______.10.等腰三角形的顶角是70°,则其底角是______.11.近似数与准确数的接近程度,可以用精确度表示,用四舍五入法取近似数.数据______.(精确到0.1)12.将正比例函数的图像向上平移5个单位,得到函数表达式为______.13.如图,,,,则______.14.如图,正方形A的面积为______.15.如图,数轴上点C所表示的数是______.16.已知点,点,若轴,则线段PQ的长为______.17.一次函数与正比例函数在同一平面直角坐标系的图像如图所示,则关于x的不等式的解集为______.18.如图,在四边形ABCD中,,E是对角线AC的中点,F是对角线BD上的动点,连接EF.若,,则的最小值为______.三、解答题(本题共4题,每题8分,共32分)19.计算:.20.求下列各式中的x:(1);(2).21.如图,C是线段AB的中点,,.求证:.22.已知与成正比,且时.求y与x之间的函数关系式.四、解答题(本题共4题,每题10分,共40分)23.如图,在平面直角坐标系中,三个顶点的坐标分别为,,,若把向右平移5个单位长度,再向下平移3个单位长度得到,点,,的对应点分别为,,.(1)写出,,的坐标:______,______,______;(2)在图中画出平移后的Δ;(3)求出的面积.24.某快递公司的每位快递员的日收入y(元)与日派送量x(件)成函数关系如图所示.(1)求y与x之间的函数表达式;(2)若一位快递员的日收入不少于110元,则他至少要派送多少件快递?25.已知,如图,,.(1)用尺规求作点P,点P在AB上,且.(保留作图痕迹,不写作法)(2)连接PC,若,,,求PC的长.26.我们知道,负数没有算术平方根,但对于三个互不相等的负整数,若两两乘积的算术平方根都是整数,则称这三个数为“完美组合数”.例如:、、这三个数,,,,其结果6、3、2都是整数,所以、、这三个数称为“完美组合数”.(1)、、这三个数是“完美组合数”吗?请说明理由;(2)若三个数、m、是“完美组合数”,其中有两个数乘积的算术平方根为15,求m的值.五、解答题(本大题共2题,每题12分,共24分)27.如图,在两个同心圆中,大圆的半径OA和OB分别交小圆于点C和D,连接AD、BC,交于点P.(1)证明:;(2)证明:;(3)问:点P在的平分线上吗?为什么?28.如图1,在平面直角坐标系中,已知一次函数与x轴、y轴分别交于点A,B.(1)求出点A、点B的坐标;(2)点D是在直线AB上的动点,当时,求出点D的坐标;(3)如图2,P为A点右侧x轴上的一动点,以P为直角顶点、BP为腰在第一象限内线作等腰直角三角形,连接QA并延长交y轴于点K.当P点运动时,K点的位置是否发生变化?如果不变,请求出它的坐标;如果变化,请说明理由.八年级数学参考答案及评分标准一、选择题(本大题共8小题,每题3分,共24分.)1.D2.C3.B4.B5.D6.D7.B8.A二、填空题(本大题共10小题,每题3分,共30分.)9.x≥-110.55°11.9.612.y=-3x+513.314.10015.16.417.x≥-118.三、解答题(本大题共4小题,共32分.)19.解:原式=1-4+4+2=3.20.解:(1)根据题意得,;(2)根据题意得(x+1)3=8,x+1=2,x=1.21.证明:∵C是线段AB的中点,∴AC=BC,∵∠ACE=∠BCD,∴∠ACD=∠BCE,在△ADC和△BEC中,∴△ADC≌△BEC(ASA),∴AD=BE.22.解:设y+2=k(x+1),把x=2,y=7代入y+2=k(x+1)中可得:k=3,∴y+2=3(x+1),∴y=3x+1四、解答题(本大题共4小题,共40分.)23.解:(1)A'(1,0),B'(3,1),C'(4,-2),(2)画图略(3),∴△A'B'C'的面积为3.5.24.解:(1)设y(元)x(件)之间的函数关系式为y=kx+b,将(0,70)、(30,100)代入y=kx+b,解得:,∴函数关系式为y=x+70;(2)根据题意得:x+70≥110,解得:x≥40.答:某快递员的日收入不少于110元,则他至少要派送40件.25.解:(1)画图略(2)如图,连接PC在△ABC中,∵∠ACB=60°,∠A=90°∴∠B=30°∵PB=PC∴∠PCB=∠B=30°∴∠ACP=30°∴PC=PB=2AP∴AP+BP=6∴PC=426.解:(1)∵,,,∴-3、-12、-27这三个数是“完美组合数”;(2)若-5、m这两个数乘积的算术平方根为15,解得m=-45,而-5、-45、-20是“完美组合数”,∴m=-45;若m、-20这两个数乘积的算术平方根为15,解得m=-112.5(不是整数,舍去),综上所述,m=-45.五、解答题(本大题共2小题,共24分.)27.解:(1)在△OAD和△OBC中,∴≌(SAS)(2)∵≌∴∠A=∠B∵OA=OB,OC=OD∴AC=BD在△PAC和△PBD中,(AAS)∴≌(3)在理由:连接OP∵≌∴AP=BD在△PAO和△PBO中,(SSS)∴△PAO≌△PBO∴∠AOP=∠BOP28.解:(1)当x=0时,y=6,∴点B(0,6)当y=0时,x=6,∴点A(6,0)(2)∵,∴|yD|=|yB|=3,即|-x+6|=3,解得:x=3或9,当x=3时,y=3;当x=9时,y=-3故点D的坐标为(3,3)或(9,-3);(3)K点的位置不发生变化,理由:设点P的坐标为(t,0),过点Q作QH⊥x轴于点H,∵∠BPO+∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44075-2024纳米技术表面增强拉曼固相基片均匀性测量拉曼成像分析法
- GB/T 30102-2024塑料废弃物的回收和再利用指南
- 开发商与物业公司间物业管理服务协议(3篇)
- 短期合同工劳动协议(2024年修订版)2篇
- 设备安装及技术咨询合同
- 诚信招聘承诺保证书
- 质优砂砾销售合同
- 质量稳定承诺保证书
- 购物无忧的品质保证
- 购销合同中的跨界合作与拓展
- 企业财务会计电子教案 10存货核算4
- 定期体检 预防常见病 课件 2024-2025学年人教版(2024)初中体育与健康七年级全一册
- 现代服务业课件
- 生活饮用水、公共场所卫生管理系列国家强制性标准解读答案-2024年全国疾控系统“大学习”活动
- 教师成长案例数字赋能 创新教学 启智未来
- 2024-2030年中国海洋工程行业市场发展分析及前景趋势与投资前景研究报告
- 消化内科五年发展规划
- 多水源联合调度技术
- 2024市场场地租赁保证金合同范本
- 中学生网络安全教育主题班会
- 大班绘本阅读《小老鼠的探险日记》教案含反思
评论
0/150
提交评论