版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省济宁市金乡县2023-2024学年数学八上期末质量跟踪监视模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.实数、、、在数轴上的位置如图所示,下列关系式不正确的是()A. B. C. D.2.校舞蹈队10名队员的年龄情况统计如下表,则校舞蹈队队员年龄的众数是()A.12 B.13 C.14 D.153.将平面直角坐标系内某个图形上各点的横坐标都乘以-1,纵坐标不变,所得图形与原图形的关系是A.关于x轴对称 B.关于y轴对称 C.关于原点对称 D.两图形重合4.如图,在△ABC中,∠C=90°,∠A=15°,∠DBC=60°,BC=1,则AD的长为()A.1.5 B.2 C.3 D.45.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A. B. C. D.6.已知函数是正比例函数,且图像在第二、四象限内,则的值是()A.2 B. C.4 D.7.下图中为轴对称图形的是().A. B. C. D.8.三角形的五心在平面几何中占有非常重要的地位,这五心分别是:重心、外心、内心、垂心、旁心,其中三角形的重心是三角形的()A.三条角平分线的交点B.三条中线的交点C.三条高所在直线的交点D.三边垂直平分线的交点9.函数y=3x+1的图象一定经过点()A.(3,5) B.(-2,3) C.(2,5) D.(0,1)10.如图,圆柱的底面周长为24厘米,高AB为5厘米,BC是底面直径,一只蚂蚁从点A出发沿着圆柱体的侧面爬行到点C的最短路程是()A.6厘米 B.12厘米 C.13厘米 D.16厘米二、填空题(每小题3分,共24分)11.计算-=__________.12.下表给出的是关于某个一次函数的自变量x及其对应的函数值y的部分对应值,x…﹣2﹣10…y…m2n…则m+n的值为_____.13.的绝对值是______.14.空调安装在墙上时,一般都采用如图所示的方法固定.这种方法应用的几何原理是:三角形具有______.15.若,那么的化简结果是.16.甲、乙二人做某种机械零件.已知甲每小时比乙多做4个,甲做60个所用的时间比乙做40个所用的时间相等,则乙每小时所做零件的个数为_____.17.若有(x﹣3)0=1成立,则x应满足条件_____.18.在中,,的垂直平分线与所在的直线相交所得到的锐角为,则等于______________度.三、解答题(共66分)19.(10分)(1)解方程:(2)先化简,再求值:,其中.20.(6分)如图,三个顶点的坐标分别为、、.(1)若与关于y轴成轴对称,则三个顶点坐标分别为_________,____________,____________;(2)若P为x轴上一点,则的最小值为____________;(3)计算的面积.21.(6分)如图,△ABC中,点D在AC边上,AE∥BC,连接ED并延长ED交BC于点F,若AD=CD,求证:ED=FD.22.(8分)(1)因式分解:(2)解方程:(3)计算:23.(8分)分解因式:(m+1)(m﹣9)+8m.24.(8分)化简并求值:,其中x=﹣1.25.(10分)如图,长方形中∥,边,.将此长方形沿折叠,使点与点重合,点落在点处.(1)试判断的形状,并说明理由;(2)求的面积.26.(10分)计算:(1)()+()(2)
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值解题即可.【详解】如下图:A.∵OA>OB,∴|a|>|b|,故A正确;B.,故B正确;C..|a-c|=|a+(-c)|=-a+c=c-a,故C正确;D.|d-1|=OD-OE=DE,|c-a|=|c+(-a)|=OC+OA,故D不正确.故答案为:D.【点睛】本题考查了实数与数轴,正确理解绝对值的意义是解题的关键.2、C【分析】根据众数的定义可直接得出答案.【详解】解:∵年龄是14岁的有4名队员,人数最多,∴校舞蹈队队员年龄的众数是14,故选:C.【点睛】本题考查了众数的定义,牢记众数是一组数据中出现次数最多的数是解题的关键.3、B【解析】在坐标系中,点的坐标关于y轴对称则纵坐标不变,横坐标变为原坐标的相反数,题中纵坐标不变,横坐标都乘以-1,变为原来的数的相反数,所以关于y坐标轴对称,故B正确.4、B【分析】先利用∠C=90°,∠DBC=60°,求出∠BDC=30°,再利用30°所对的直角边是斜边的一半可求出BD的长,再利用外角求出∠DBA,即可发现AD=BD.【详解】解:∵∠C=90°,∠DBC=60°∴∠BDC=30°∴BD=2BC=2又∵∠BDC是△BDA的外角∴∠BDC=∠A+∠DBA∴∠DBA=∠BDC-∠A=15°∴∠DBA=∠A∴AD=BD=2故选B【点睛】此题考查的是(1)30°所对的直角边是斜边的一半;(2)三角形的外角等于与它不相邻的两个内角之和;(3)等角对等边,解决此题的关键是利用以上性质找到图中各个边的数量关系5、A【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】解:设索长为x尺,竿子长为y尺,根据题意得:.故选:A.【点睛】本题考查二元一次方程组的实际应用,属于和差倍分问题,只需要找准数量间的关系,难度较小.6、C【分析】根据正比例函数的定义解答即可.【详解】∵函数是正比例函数,∴,得m=2或m=4,∵图象在第二、四象限内,∴3-m,∴m,∴m=4,故选:C.【点睛】此题考查正比例函数的定义、性质,熟记定义并掌握正比例函数的特点即可解答问题.7、D【分析】根据轴对称图形的定义可得.【详解】根据轴对称图形定义可得ABC选项均不是轴对称图形,D选项为轴对称图形.【点睛】轴对称图形沿对称轴折叠,左右两边能够完全重合.8、B【分析】根据三角形重心的概念解答即可.【详解】三角形的重心为三角形三条中线的交点故选B【点睛】本题主要考查了三角形重心的概念,掌握三角形重心的概念是解题的关键.9、D【分析】根据一次函数图象上点的坐标特点把各点分别代入函数解析式即可.【详解】A.∵当x=3时,,∴(3,5)不在函数图像上;B.∵当x=-2时,,∴(-2,3)不在函数图像上;C.∵当x=2时,,∴(2,5)不在函数图像上;D.∵当x=0时,,∴(0,1)在函数图像上.故选:D.【点睛】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.10、C【分析】根据题意,可以将圆柱体沿BC切开,然后展开,易得到矩形ABCD,根据两点之间线段最短,再根据勾股定理即可求得答案.【详解】解:∵圆柱体的周长为24cm∴展开AD的长为周长的一半:AD=12(cm)∵两点之间线段最短,AC即为所求∴根据勾股定理AC===13(cm)故选C.
【点睛】本题主要考查了几何体的展开图以及勾股定理,能够空间想象出展开图是矩形,结合勾股定理准确的运算是解决本题的关键.二、填空题(每小题3分,共24分)11、-2【分析】先化简再进行计算【详解】解:-=-2【点睛】本题考查二次根式和三次根式的计算,关键在于基础知识的掌握.12、1.【分析】设y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入即可得出答案.【详解】设一次函数解析式为:y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入y=kx+b,得:﹣2k+b=m;﹣k+b=2;b=n;∴m+n=﹣2k+b+b=﹣2k+2b=2(﹣k+b)=2×2=1.故答案为:1.【点睛】本题主要考查一次函数的待定系数法,把m+n看作一个整体,进行计算,是解题的关键.13、【分析】根据负数的绝对值是它的相反数,可得答案.【详解】解:-的绝对值是.故答案为.【点睛】本题考查了实数的性质,负数的绝对值是它的相反数,非负数的绝对值是它本身.14、稳定性【分析】钉在墙上的方法是构造三角形支架,因而应用了三角形的稳定性.【详解】这种方法应用的数学知识是:三角形的稳定性,故答案为:稳定性.【点睛】本题主要考查了三角形的稳定性,正确掌握三角形的这一性质是解题的关键.15、【分析】直接利用二次根式的性质化简求出答案.【详解】∵x<2,∴=2﹣x.故答案为:2﹣x.【点睛】本题考查了二次根式的性质与化简,正确把握二次根式的性质是解答本题的关键.16、1【详解】解:设乙每小时做x个,则甲每小时做(x+4)个,甲做60个所用的时间为,乙做40个所用的时间为,列方程为:=,解得:x=1,经检验:x=1是原分式方程的解,且符合题意,所以乙每小时做1个,故答案为1.【点睛】本题考查了列分式方程解实际问题的运用,解答时甲做60个零件所用的时间与乙做90个零件所用的时间相等建立方程是关键.17、x≠1【分析】便可推导.【详解】解:根据题意得:x﹣1≠0,解得:x≠1.故答案是:x≠1.【点睛】掌握0次方成立的意义为本题的关键.18、65°或25°【分析】(1)当△ABC是锐角三角形时,根据题目条件得到∠A=50°,利用△ABC是等腰三角形即可求解;(2)当△ABC是钝角三角形时,同理可得即可得出结果.【详解】解:(1)当△ABC是锐角等腰三角形时,如图1所示由题知:DE⊥AB,AD=DB,∠AED=40°∴∠A=180°-90°-40°=50°∵AB=AC∴△ABC是等腰三角形∴∠ABC=∠ACB∴∠ABC=(180°-50°)÷2=65°(2)当△ABC是钝角三角形时,如图2所示由题知:DE⊥AB,AD=DB,∠AED=40°∴∠AED+∠ADE=∠BAC∴∠BAC=90°+40°=130°∵AB=AC∴△ABC是等腰三角形∴∠ABC=∠ACB∴∠ABC=(180°-130°)÷2=25°∴∠ABC=65°或25°故答案为:65°或25°【点睛】本题主要考查的是垂直平分线以及三角形的外角性质,正确的运用这两个知识点是解题的关键.三、解答题(共66分)19、(1)分式方程无解;(2),.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到的值,经检验即可得到分式方程的解;
(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把的值代入计算即可求出值.【详解】(1)去分母得:,即,
解得:,
经检验:是分式方程的增根,∴原分式方程无解;(2),当时,原式.【点睛】本题考查了分式的化简求值以及解分式方程,熟练掌握运算法则是解本题的关键.20、(1)作图见解析,A1(-1,1)、B1(-4,2)、C1(-3,4);(2);(3).【分析】(1)分别作出点A,B,C关于x轴的对称点,再首尾顺次连接即可得;(2)作出点A的对称点,连接A'B,则A'B与x轴的交点即是点P的位置,则PA+PB的最小值=A′B,根据勾股定理即可得到结论;(3)根据三角形的面积公式即可得到结论.【详解】(1)如图所示,△A1B1C1即为所求,由图知,A1的坐标为(-1,1)、B1的坐标为(-4,2)、C1的坐标为(-3,4);(2)如图所示:作出点A的对称点,连接A'B,则A'B与x轴的交点即是点P的位置,则PA+PB的最小值=A′B,∵A′B=,∴PA+PB的最小值为;(3)△ABC的面积=.【点睛】本题主要考查作图-轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质及利用轴对称性质求最短路径.21、见解析【分析】由平行可得内错角相等,再利用ASA即可判定△ADE≌△CDF,所以ED=FD.【详解】证明:∵AE∥BC∴∠EAD=∠C在△ADE和△CDF中,∴△ADE≌△CDF(ASA)∴ED=FD【点睛】本题考查全等三角形的判定和性质,比较简单,找到全等条件即可.22、(1);(2)是原方程的解;(3)【分析】(1)提取公因式后用平方差公式分解即可;(2)根据去分母、去括号、移项、合并同类项、系数化为1求解,求解后检验即可;(3)根据单项式乘以多项式的法则及完全平方公式取括号后,合并同类项即可.【详解】(1)(2)方程两边同时乘以得:检验:当时,∴是原方程的解.(3)原式【点睛】本题考查的是因式分解、解分式方程、整式的混合运算,掌握因式分解的方法:提公因式法及公式法,解分式方程的一般步骤及整式的运算法则是关键.23、(m+3)(m﹣3).【分析】先对原式进行整理,之后运用平方差公式即可求解.【详解】解:原式=m2﹣8m﹣9+8m=m2﹣9=(m+3)(m﹣3).【点睛】本题考查的是因式分解,要求熟练掌握平方差公式.24、2.【解析】试题分析:先将进行化简,再将x的值代入即可;试题解析:原式=﹣•(x﹣1)==,当x=﹣1时,原式=﹣2.25、(1)是等腰三角形;(2)1【解析】试题分析:(1)根据翻折不变性和平行线的性质得到两个相等的角,根据等角对等边即可判断△BEF是等腰三角形;(2)根据翻折的性质可得BE=DE,BG=CD,∠EBG=∠ADC=90°,设BE=DE=x,表示出AE=8-x,然
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 乡下年工作计划例文
- 交警个人半年工作计划范文书
- 区就业服务管理局年度工作总结暨工作计划
- 《财产税行为税》课件
- 2024村卫生室工作计划例文
- 人教版小学五年级第九册语文教学计划
- 董事长秘书工作计划
- XX-2021第二学期学校德育工作计划
- 道德工作计划集合
- 咖啡店商业计划书
- 昆曲艺术学习通超星课后章节答案期末考试题库2023年
- 落实立德树人根本任务构建协同育人新格局建设方案
- 印象派美术课件
- 小学话剧课本剧兴趣小组社团教学设计附社团活动记录(已填好,直接打印)
- 写深圳写深圳精神大全(三篇)
- 【全国】2023年4月自学考试11742商务沟通方法与技能真题及参考答案
- Cytiva:层析介质寿命和清洁验证综合设计的良好实践白皮书
- 设计与人文:当代公共艺术学习通课后章节答案期末考试题库2023年
- 四大地理区域的自然环境特征及农业
- 07第七讲 发展全过程人民民主
- 全冀教版六年级上册英语第四单元知识点总结
评论
0/150
提交评论