山东省莒县第二中学2024届高三压轴卷数学试卷含解析_第1页
山东省莒县第二中学2024届高三压轴卷数学试卷含解析_第2页
山东省莒县第二中学2024届高三压轴卷数学试卷含解析_第3页
山东省莒县第二中学2024届高三压轴卷数学试卷含解析_第4页
山东省莒县第二中学2024届高三压轴卷数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省莒县第二中学2024届高三压轴卷数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是虚数单位,若,则()A. B.2 C. D.32.以下三个命题:①在匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②若两个变量的线性相关性越强,则相关系数的绝对值越接近于1;③对分类变量与的随机变量的观测值来说,越小,判断“与有关系”的把握越大;其中真命题的个数为()A.3 B.2 C.1 D.03.某几何体的三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是()A. B. C. D.4.在条件下,目标函数的最大值为40,则的最小值是()A. B. C. D.25.已知函数有两个不同的极值点,,若不等式有解,则的取值范围是()A. B.C. D.6.秦九韶是我国南宁时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入、的值分别为、,则输出的值为()A. B. C. D.7.对两个变量进行回归分析,给出如下一组样本数据:,,,,下列函数模型中拟合较好的是()A. B. C. D.8.函数的图象与轴交点的横坐标构成一个公差为的等差数列,要得到函数的图象,只需将的图象()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位9.已知,则p是q的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件10.蒙特卡洛算法是以概率和统计的理论、方法为基础的一种计算方法,将所求解的问题同一定的概率模型相联系;用均匀投点实现统计模拟和抽样,以获得问题的近似解,故又称统计模拟法或统计实验法.现向一边长为的正方形模型内均匀投点,落入阴影部分的概率为,则圆周率()A. B.C. D.11.已知定义在上的函数的周期为4,当时,,则()A. B. C. D.12.的展开式中各项系数的和为2,则该展开式中常数项为A.-40 B.-20 C.20 D.40二、填空题:本题共4小题,每小题5分,共20分。13.如图,己知半圆的直径,点是弦(包含端点,)上的动点,点在弧上.若是等边三角形,且满足,则的最小值为___________.14.如图,为测量出高,选择和另一座山的山顶为测量观测点,从点测得点的仰角,点的仰角以及;从点测得.已知山高,则山高__________.15.在等比数列中,,则________.16.记复数z=a+bi(i为虚数单位)的共轭复数为,已知z=2+i,则_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)移动支付(支付宝及微信支付)已经渐渐成为人们购物消费的一种支付方式,为调查市民使用移动支付的年龄结构,随机对100位市民做问卷调查得到列联表如下:(1)将上列联表补充完整,并请说明在犯错误的概率不超过0.01的前提下,认为支付方式与年龄是否有关?(2)在使用移动支付的人群中采用分层抽样的方式抽取10人做进一步的问卷调查,从这10人随机中选出3人颁发参与奖励,设年龄都低于35岁(含35岁)的人数为,求的分布列及期望.(参考公式:(其中)18.(12分)已知公比为正数的等比数列的前项和为,且,.(1)求数列的通项公式;(2)设,求数列的前项和.19.(12分)设函数.(1)求不等式的解集;(2)若的最小值为,且,求的最小值.20.(12分)如图,在四棱锥中,平面,底面是矩形,,,分别是,的中点.(Ⅰ)求证:平面;(Ⅱ)设,求三棱锥的体积.21.(12分)已知直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,且曲线的左焦点在直线上.(Ⅰ)求的极坐标方程和曲线的参数方程;(Ⅱ)求曲线的内接矩形的周长的最大值.22.(10分)已知是抛物线:的焦点,点在上,到轴的距离比小1.(1)求的方程;(2)设直线与交于另一点,为的中点,点在轴上,.若,求直线的斜率.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

直接将两边同时乘以求出复数,再求其模即可.【详解】解:将两边同时乘以,得故选:A【点睛】考查复数的运算及其模的求法,是基础题.2、C【解析】

根据抽样方式的特征,可判断①;根据相关系数的性质,可判断②;根据独立性检验的方法和步骤,可判断③.【详解】①根据抽样是间隔相同,且样本间无明显差异,故①应是系统抽样,即①为假命题;②两个随机变量相关性越强,则相关系数的绝对值越接近于1;两个随机变量相关性越弱,则相关系数的绝对值越接近于0;故②为真命题;③对分类变量与的随机变量的观测值来说,越小,“与有关系”的把握程度越小,故③为假命题.故选:.【点睛】本题以命题的真假判断为载体考查了抽样方法、相关系数、独立性检验等知识点,属于基础题.3、C【解析】由三视图可知,该几何体是下部是半径为2,高为1的圆柱的一半,上部为底面半径为2,高为2的圆锥的一半,所以,半圆柱的体积为,上部半圆锥的体积为,所以该几何体的体积为,故应选.4、B【解析】

画出可行域和目标函数,根据平移得到最值点,再利用均值不等式得到答案.【详解】如图所示,画出可行域和目标函数,根据图像知:当时,有最大值为,即,故..当,即时等号成立.故选:.【点睛】本题考查了线性规划中根据最值求参数,均值不等式,意在考查学生的综合应用能力.5、C【解析】

先求导得(),由于函数有两个不同的极值点,,转化为方程有两个不相等的正实数根,根据,,,求出的取值范围,而有解,通过分裂参数法和构造新函数,通过利用导数研究单调性、最值,即可得出的取值范围.【详解】由题可得:(),因为函数有两个不同的极值点,,所以方程有两个不相等的正实数根,于是有解得.若不等式有解,所以因为.设,,故在上单调递增,故,所以,所以的取值范围是.故选:C.【点睛】本题考查利用导数研究函数单调性、最值来求参数取值范围,以及运用分离参数法和构造函数法,还考查分析和计算能力,有一定的难度.6、B【解析】

列出循环的每一步,由此可得出输出的值.【详解】由题意可得:输入,,,;第一次循环,,,,继续循环;第二次循环,,,,继续循环;第三次循环,,,,跳出循环;输出.故选:B.【点睛】本题考查根据算法框图计算输出值,一般要列举出算法的每一步,考查计算能力,属于基础题.7、D【解析】

作出四个函数的图象及给出的四个点,观察这四个点在靠近哪个曲线.【详解】如图,作出A,B,C,D中四个函数图象,同时描出题中的四个点,它们在曲线的两侧,与其他三个曲线都离得很远,因此D是正确选项,故选:D.【点睛】本题考查回归分析,拟合曲线包含或靠近样本数据的点越多,说明拟合效果好.8、A【解析】依题意有的周期为.而,故应左移.9、B【解析】

根据诱导公式化简再分析即可.【详解】因为,所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分条件.故选:B【点睛】本题考查充分与必要条件的判定以及诱导公式的运用,属于基础题.10、A【解析】

计算出黑色部分的面积与总面积的比,即可得解.【详解】由,∴.故选:A【点睛】本题考查了面积型几何概型的概率的计算,属于基础题.11、A【解析】

因为给出的解析式只适用于,所以利用周期性,将转化为,再与一起代入解析式,利用对数恒等式和对数的运算性质,即可求得结果.【详解】定义在上的函数的周期为4,当时,,,,.故选:A.【点睛】本题考查了利用函数的周期性求函数值,对数的运算性质,属于中档题.12、D【解析】令x=1得a=1.故原式=.的通项,由5-2r=1得r=2,对应的常数项=80,由5-2r=-1得r=3,对应的常数项=-40,故所求的常数项为40,选D解析2.用组合提取法,把原式看做6个因式相乘,若第1个括号提出x,从余下的5个括号中选2个提出x,选3个提出;若第1个括号提出,从余下的括号中选2个提出,选3个提出x.故常数项==-40+80=40二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】

建系,设,表示出点坐标,则,根据的范围得出答案.【详解】解:以为原点建立平面坐标系如图所示:则,,,,设,则,,,,,,,显然当取得最大值4时,取得最小值1.故答案为:1.【点睛】本题考查了平面向量的数量积运算,坐标运算,属于中档题.14、1【解析】试题分析:在中,,,在中,由正弦定理可得即解得,在中,.故答案为1.考点:正弦定理的应用.15、1【解析】

设等比数列的公比为,再根据题意用基本量法求解公比,进而利用等比数列项之间的关系得即可.【详解】设等比数列的公比为.由,得,解得.又由,得.则.故答案为:1【点睛】本题主要考查了等比数列基本量的求解方法,属于基础题.16、3﹣4i【解析】

计算得到z2=(2+i)2=3+4i,再计算得到答案.【详解】∵z=2+i,∴z2=(2+i)2=3+4i,则.故答案为:3﹣4i.【点睛】本题考查了复数的运算,共轭复数,意在考查学生的计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)列联表见解析,在犯错误的概率不超过0.01的前提下,认为支付方式与年龄有关;(2)分布列见解析,期望为.【解析】

(1)根据题中所给的条件补全列联表,根据列联表求出观测值,把观测值同临界值进行比较,得到能在犯错误的概率不超过0.01的前提下,认为支付方式与年龄有关.(2)首先确定的取值,求出相应的概率,可得分布列和数学期望.【详解】(1)根据题意及列联表可得完整的列联表如下:35岁以下(含35岁)35岁以上合计使用移动支付401050不使用移动支付104050合计5050100根据公式可得,所以在犯错误的概率不超过0.01的前提下,认为支付方式与年龄有关.(2)根据分层抽样,可知35岁以下(含35岁)的人数为8人,35岁以上的有2人,所以获得奖励的35岁以下(含35岁)的人数为,则的可能为1,2,3,且,,,其分布列为123.【点睛】独立性检验依据的值结合附表数据进行判断,另外,离散型随机变量的分布列,在求解的过程中,注意变量的取值以及对应的概率要计算正确,注意离散型随机变量的期望公式的使用,属于中档题目.18、(1)(2)【解析】

(1)判断公比不为1,运用等比数列的求和公式,解方程可得公比,进而得到所求通项公式;(2)求得,运用数列的错位相减法求和,以及等比数列的求和公式,计算可得所求和.【详解】解:(1)设公比为正数的等比数列的前项和为,且,,可得时,,不成立;当时,,即,解得(舍去),则;(2),前项和,,两式相减可得,化简可得.【点睛】本题考查等比数列的通项公式和求和公式的运用,考查数列的错位相减法求和,考查方程思想和运算能力,属于中档题.19、(1)或(2)最小值为.【解析】

(1)讨论,,三种情况,分别计算得到答案.(2)计算得到,再利用均值不等式计算得到答案.【详解】(1)当时,由,解得;当时,由,解得;当时,由,解得.所以所求不等式的解集为或.(2)根据函数图像知:当时,,所以.因为,由,可知,所以,当且仅当,,时,等号成立.所以的最小值为.【点睛】本题考查了解绝对值不等式,函数最值,均值不等式,意在考查学生对于不等式,函数知识的综合应用.20、(Ⅰ)见解析(Ⅱ)【解析】

(Ⅰ)取中点,连,,根据平行四边形,可得,进而证得平面平面,利用面面垂直的性质,得平面,又由,即可得到平面.(Ⅱ)根据三棱锥的体积公式,利用等积法,即可求解.【详解】(Ⅰ)取中点,连,,由,可得,可得是平行四边形,则,又平面,∴平面平面,∵平面,平面,∴平面平面,∵,是中点,则,而平面平面,而,∴平面.(Ⅱ)根据三棱锥的体积公式,得.【点睛】本题主要考查了空间中线面位置关系的判定与证明,以及利用“等体积法”求解三棱锥的体积,其中解答中熟记线面位置关系的判定定理和性质定理,以及合理利用“等体积法”求解是解答的关键,着重考查了推理与论证能力,属于基础题.21、(Ⅰ)曲线的参数方程为:(为参数);的极坐标方程为;(Ⅱ)16.【解析】

(

I

)直接利用转换关系,把参数方程、极坐标方程和直角坐标方程之间进行转换;(

II

)利用三角函数关系式的恒等变换和正弦型函数的性质的应用,即可求出结果.【详解】(Ⅰ)由题意:曲线的直角坐标方程为:,所以曲线的参数方程为(为参数),因为直线的直角坐标方程为:,又因曲线的左焦点为,将其代入中,得到,所以的极坐标方程为.(Ⅱ)设椭圆的内接矩形的顶点为,,,,所以椭圆的内接矩形的周长为:,所以当时,即时,椭圆的内接矩形的周长取得最大值16.【点睛】本题考查了曲线的参数方程,极坐标方程与普通方程间的互化,三角函数关系式的恒等变换,正弦型函数的性质的应用,极径的应用,考查学生的求解运算能力和转化能力,属于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论