山东省垦利县第一中学2024届高三第六次模拟考试数学试卷含解析_第1页
山东省垦利县第一中学2024届高三第六次模拟考试数学试卷含解析_第2页
山东省垦利县第一中学2024届高三第六次模拟考试数学试卷含解析_第3页
山东省垦利县第一中学2024届高三第六次模拟考试数学试卷含解析_第4页
山东省垦利县第一中学2024届高三第六次模拟考试数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省垦利县第一中学2024届高三第六次模拟考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数f(x)=xex2+axeA.1 B.-1 C.a D.-a2.在中,角的对边分别为,若,则的形状为()A.直角三角形 B.等腰非等边三角形C.等腰或直角三角形 D.钝角三角形3.设集合(为实数集),,,则()A. B. C. D.4.已知集合(),若集合,且对任意的,存在使得,其中,,则称集合A为集合M的基底.下列集合中能作为集合的基底的是()A. B. C. D.5.双曲线的一条渐近线方程为,那么它的离心率为()A. B. C. D.6.如图是一个几何体的三视图,则该几何体的体积为()A. B. C. D.7.在长方体中,,则直线与平面所成角的余弦值为()A. B. C. D.8.设点是椭圆上的一点,是椭圆的两个焦点,若,则()A. B. C. D.9.圆心为且和轴相切的圆的方程是()A. B.C. D.10.已知三棱柱()A. B. C. D.11.已知函数,若有2个零点,则实数的取值范围为()A. B. C. D.12.已知函数是上的偶函数,且当时,函数是单调递减函数,则,,的大小关系是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列的各项均为正数,记为的前n项和,若,,则________.14.已知在等差数列中,,,前n项和为,则________.15.将函数的图象向左平移个单位长度,得到一个偶函数图象,则________.16.已知(且)有最小值,且最小值不小于1,则的取值范围为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(Ⅰ)求的最小正周期;(Ⅱ)求在上的最小值和最大值.18.(12分)已知函数(是自然对数的底数,).(1)求函数的图象在处的切线方程;(2)若函数在区间上单调递增,求实数的取值范围;(3)若函数在区间上有两个极值点,且恒成立,求满足条件的的最小值(极值点是指函数取极值时对应的自变量的值).19.(12分)如图,在矩形中,,,点分别是线段的中点,分别将沿折起,沿折起,使得重合于点,连结.(Ⅰ)求证:平面平面;(Ⅱ)求直线与平面所成角的正弦值.20.(12分)已知点和椭圆.直线与椭圆交于不同的两点,.(1)当时,求的面积;(2)设直线与椭圆的另一个交点为,当为中点时,求的值.21.(12分)以坐标原点为极点,轴的正半轴为极轴,且在两种坐标系中取相同的长度单位,建立极坐标系,判断直线为参数)与圆的位置关系.22.(10分)已知函数.(1)设,求函数的单调区间,并证明函数有唯一零点.(2)若函数在区间上不单调,证明:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

令xex=t,构造g(x)=xex,要使函数f(x)=xex2+axex-a有三个不同的零点x1,x2,【详解】令xex=t,构造g(x)=xex,求导得g'(x)=故g(x)在-∞,1上单调递增,在1,+∞上单调递减,且x<0时,g(x)<0,x>0时,g(x)>0,g(x)max=g(1)=1e,可画出函数g(x)的图象(见下图),要使函数f(x)=xex2+axex-a有三个不同的零点x1,x若a>0,即t1+t2=-a<0t1故1-x若a<-4,即t1+t2=-a>4t1故选A.【点睛】解决函数零点问题,常常利用数形结合、等价转化等数学思想.2、C【解析】

利用正弦定理将边化角,再由,化简可得,最后分类讨论可得;【详解】解:因为所以所以所以所以所以当时,为直角三角形;当时即,为等腰三角形;的形状是等腰三角形或直角三角形故选:.【点睛】本题考查三角形形状的判断,考查正弦定理的运用,考查学生分析解决问题的能力,属于基础题.3、A【解析】

根据集合交集与补集运算,即可求得.【详解】集合,,所以所以故选:A【点睛】本题考查了集合交集与补集的混合运算,属于基础题.4、C【解析】

根据题目中的基底定义求解.【详解】因为,,,,,,所以能作为集合的基底,故选:C【点睛】本题主要考查集合的新定义,还考查了理解辨析的能力,属于基础题.5、D【解析】

根据双曲线的一条渐近线方程为,列出方程,求出的值即可.【详解】∵双曲线的一条渐近线方程为,可得,∴,∴双曲线的离心率.故选:D.【点睛】本小题主要考查双曲线离心率的求法,属于基础题.6、A【解析】

根据三视图可得几何体为直三棱柱,根据三视图中的数据直接利用公式可求体积.【详解】由三视图可知几何体为直三棱柱,直观图如图所示:其中,底面为直角三角形,,,高为.∴该几何体的体积为故选:A.【点睛】本题考查三视图及棱柱的体积,属于基础题.7、C【解析】

在长方体中,得与平面交于,过做于,可证平面,可得为所求解的角,解,即可求出结论.【详解】在长方体中,平面即为平面,过做于,平面,平面,平面,为与平面所成角,在,,直线与平面所成角的余弦值为.故选:C.【点睛】本题考查直线与平面所成的角,定义法求空间角要体现“做”“证”“算”,三步骤缺一不可,属于基础题.8、B【解析】∵∵∴∵,∴∴故选B点睛:本题主要考查利用椭圆的简单性质及椭圆的定义.求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.9、A【解析】

求出所求圆的半径,可得出所求圆的标准方程.【详解】圆心为且和轴相切的圆的半径为,因此,所求圆的方程为.故选:A.【点睛】本题考查圆的方程的求解,一般求出圆的圆心和半径,考查计算能力,属于基础题.10、C【解析】因为直三棱柱中,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC为过底面ABC的截面圆的直径.取BC中点D,则OD⊥底面ABC,则O在侧面BCC1B1内,矩形BCC1B1的对角线长即为球直径,所以2R==13,即R=11、C【解析】

令,可得,要使得有两个实数解,即和有两个交点,结合已知,即可求得答案.【详解】令,可得,要使得有两个实数解,即和有两个交点,,令,可得,当时,,函数在上单调递增;当时,,函数在上单调递减.当时,,若直线和有两个交点,则.实数的取值范围是.故选:C.【点睛】本题主要考查了根据零点求参数范围,解题关键是掌握根据零点个数求参数的解法和根据导数求单调性的步骤,考查了分析能力和计算能力,属于中档题.12、D【解析】

利用对数函数的单调性可得,再根据的单调性和奇偶性可得正确的选项.【详解】因为,,故.又,故.因为当时,函数是单调递减函数,所以.因为为偶函数,故,所以.故选:D.【点睛】本题考查抽象函数的奇偶性、单调性以及对数函数的单调性在大小比较中的应用,比较大小时注意选择合适的中间数来传递不等关系,本题属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、127【解析】

已知条件化简可化为,等式两边同时除以,则有,通过求解方程可解得,即证得数列为等比数列,根据已知即可解得所求.【详解】由..故答案为:.【点睛】本题考查通过递推公式证明数列为等比数列,考查了等比的求和公式,考查学生分析问题的能力,难度较易.14、39【解析】

设等差数列公差为d,首项为,再利用基本量法列式求解公差与首项,进而求得即可.【详解】设等差数列公差为d,首项为,根据题意可得,解得,所以.故答案为:39【点睛】本题考查等差数列的基本量计算以及前n项和的公式,属于基础题.15、【解析】

根据平移后关于轴对称可知关于对称,进而利用特殊值构造方程,从而求得结果.【详解】向左平移个单位长度后得到偶函数图象,即关于轴对称关于对称即:本题正确结果:【点睛】本题考查根据三角函数的对称轴求解参数值的问题,关键是能够通过平移后的对称轴得到原函数的对称轴,进而利用特殊值的方式来进行求解.16、【解析】

真数有最小值,根据已知可得的范围,求出函数的最小值,建立关于的不等量关系,求解即可.【详解】,且(且)有最小值,,的取值范围为.故答案为:.【点睛】本题考查对数型复合函数的性质,熟练掌握基本初等函数的性质是解题关键,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)最小值和最大值.【解析】试题分析:(1)由已知利用两角和与差的三角函数公式及倍角公式将的解析式化为一个复合角的三角函数式,再利用正弦型函数的最小正周期计算公式,即可求得函数的最小正周期;(2)由(1)得函数,分析它在闭区间上的单调性,可知函数在区间上是减函数,在区间上是增函数,由此即可求得函数在闭区间上的最大值和最小值.也可以利用整体思想求函数在闭区间上的最大值和最小值.由已知,有的最小正周期.(2)∵在区间上是减函数,在区间上是增函数,,,∴函数在闭区间上的最大值为,最小值为.考点:1.两角和与差的正弦公式、二倍角的正弦与余弦公式;2.三角函数的周期性和单调性.18、(1);(2);(3).【解析】

(1)利用导数的几何意义计算即可;(2)在上恒成立,只需,注意到;(3)在上有两根,令,求导可得在上单调递减,在上单调递增,所以且,,,求出的范围即可.【详解】(1)因为,所以,当时,,所以切线方程为,即.(2),.因为函数在区间上单调递增,所以,且恒成立,即,所以,即,又,故,所以实数的取值范围是.(3).因为函数在区间上有两个极值点,所以方程在上有两不等实根,即.令,则,由,得,所以在上单调递减,在上单调递增,所以,解得且.又由,所以,且当和时,单调递增,当时,单调递减,是极值点,此时令,则,所以在上单调递减,所以.因为恒成立,所以.若,取,则,所以.令,则,.当时,;当时,.所以,所以在上单调递增,所以,即存在使得,不合题意.满足条件的的最小值为-4.【点睛】本题考查导数的综合应用,涉及到导数的几何意义,利用导数研究函数的单调性、极值点,不等式恒成立等知识,是一道难题.19、(Ⅰ)详见解析;(Ⅱ).【解析】

(Ⅰ)根据,,可得平面,故而平面平面.(Ⅱ)过作于,则可证平面,故为所求角,在中利用余弦定理计算,再计算.【详解】解:(Ⅰ)因为,,,平面,平面所以平面,又平面,所以平面平面;(Ⅱ)过作于,则由平面,且平面知,所以平面,从而是直线与平面所成角.因为,,,所以,从而.【点睛】本题考查了面面垂直的判定,考查直线与平面所成角的计算,属于中档题.20、(1);(2)或【解析】

(1)联立直线的方程和椭圆方程,求得交点的横坐标,由此求得三角形的面积.(2)法一:根据的坐标求得的坐标,将的坐标都代入椭圆方程,化简后求得的坐标,进而求得的值.法二:设出直线的方程,联立直线的方程和椭圆的方程,化简后写出根与系数关系,结合求得点的坐标,进而求得的值.【详解】(1)设,,若,则直线的方程为,由,得,解得,,设直线与轴交于点,则且.(2)法一:设点因为,,所以又点,都在椭圆上,所以解得或所以或.法二:设显然直线有斜率,设直线的方程为由,得所以又解得或所以或所以或.【点睛】本小题主要考查直线和椭圆的位置关系,考查椭圆中三角形面积的求法,考查运算求解能力,属于中档题.21、直线与圆C相切.【解析】

首先把直线和圆转换为直角坐标方程,进一步利用点到直线的距离的应用求出直线和圆的位置关系.【详解】直线为参数),转换为直角坐标方程为.圆转换为直角坐标方程为,转换为标准形式为,所以圆心到直线,的距离.直线与圆C相切.【点睛】本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,直线与圆的位置关系式的应用,点到直线的距离公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.22、(1)为增区间;为减区间.见解析(2)见解析【解析】

(1)先求得的定义域,然后利用导数求得的单调区间,结合零点存在性定理判断出有唯一零点.(2)求得的导函数,结合在区间上不单调,证得,通过证明,证得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论