版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省临沂市某重点中学2024届高考适应性考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,,,,点,分别在线段,上,且,,则().A. B. C.4 D.92.设递增的等比数列的前n项和为,已知,,则()A.9 B.27 C.81 D.3.木匠师傅对一个圆锥形木件进行加工后得到一个三视图如图所示的新木件,则该木件的体积()A. B. C. D.4.函数的定义域为,集合,则()A. B. C. D.5.已知函数(其中为自然对数的底数)有两个零点,则实数的取值范围是()A. B.C. D.6.如图是一个算法流程图,则输出的结果是()A. B. C. D.7.如图,在三棱锥中,平面,,,,,分别是棱,,的中点,则异面直线与所成角的余弦值为A.0 B. C. D.18.在复平面内,复数z=i对应的点为Z,将向量绕原点O按逆时针方向旋转,所得向量对应的复数是()A. B. C. D.9.等比数列的各项均为正数,且,则()A.12 B.10 C.8 D.10.直三棱柱中,,,则直线与所成的角的余弦值为()A. B. C. D.11.复数的共轭复数为()A. B. C. D.12.设函数(,)是上的奇函数,若的图象关于直线对称,且在区间上是单调函数,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知是抛物线上一点,是圆关于直线对称的曲线上任意一点,则的最小值为________.14.展开式中,含项的系数为______.15.已知函数f(x)=若关于x的方程f(x)=kx有两个不同的实根,则实数k的取值范围是________.16.如图,在菱形ABCD中,AB=3,,E,F分别为BC,CD上的点,,若线段EF上存在一点M,使得,则____________,____________.(本题第1空2分,第2空3分)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的内角,,的对边分别为,,,且.(1)求;(2)若的面积为,,求的周长.18.(12分)每年3月20日是国际幸福日,某电视台随机调查某一社区人们的幸福度.现从该社区群中随机抽取18名,用“10分制”记录了他们的幸福度指数,结果见如图所示茎叶图,其中以小数点前的一位数字为茎,小数点后的一位数字为叶.若幸福度不低于8.5分,则称该人的幸福度为“很幸福”.(Ⅰ)求从这18人中随机选取3人,至少有1人是“很幸福”的概率;(Ⅱ)以这18人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记表示抽到“很幸福”的人数,求的分布列及.19.(12分)如图,在三棱锥中,平面平面,,.点,,分别为线段,,的中点,点是线段的中点.(1)求证:平面.(2)判断与平面的位置关系,并证明.20.(12分)已知函数,(其中,).(1)求函数的最小值.(2)若,求证:.21.(12分)已知抛物线的焦点为,点,点为抛物线上的动点.(1)若的最小值为,求实数的值;(2)设线段的中点为,其中为坐标原点,若,求的面积.22.(10分)已知函数.(1)若函数,试讨论的单调性;(2)若,,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
根据题意,分析可得,由余弦定理求得的值,由可得结果.【详解】根据题意,,则在中,又,则则则则故选:B【点睛】此题考查余弦定理和向量的数量积运算,掌握基本概念和公式即可解决,属于简单题目.2、A【解析】
根据两个已知条件求出数列的公比和首项,即得的值.【详解】设等比数列的公比为q.由,得,解得或.因为.且数列递增,所以.又,解得,故.故选:A【点睛】本题主要考查等比数列的通项和求和公式,意在考查学生对这些知识的理解掌握水平.3、C【解析】
由三视图知几何体是一个从圆锥中截出来的锥体,圆锥底面半径为,圆锥的高,截去的底面劣弧的圆心角为,底面剩余部分的面积为,利用锥体的体积公式即可求得.【详解】由已知中的三视图知圆锥底面半径为,圆锥的高,圆锥母线,截去的底面弧的圆心角为120°,底面剩余部分的面积为,故几何体的体积为:.故选C.【点睛】本题考查了三视图还原几何体及体积求解问题,考查了学生空间想象,数学运算能力,难度一般.4、A【解析】
根据函数定义域得集合,解对数不等式得到集合,然后直接利用交集运算求解.【详解】解:由函数得,解得,即;又,解得,即,则.故选:A.【点睛】本题考查了交集及其运算,考查了函数定义域的求法,是基础题.5、B【解析】
求出导函数,确定函数的单调性,确定函数的最值,根据零点存在定理可确定参数范围.【详解】,当时,,单调递增,当时,,单调递减,∴在上只有一个极大值也是最大值,显然时,,时,,因此要使函数有两个零点,则,∴.故选:B.【点睛】本题考查函数的零点,考查用导数研究函数的最值,根据零点存在定理确定参数范围.6、A【解析】
执行程序框图,逐次计算,根据判断条件终止循环,即可求解,得到答案.【详解】由题意,执行上述的程序框图:第1次循环:满足判断条件,;第2次循环:满足判断条件,;第3次循环:满足判断条件,;不满足判断条件,输出计算结果,故选A.【点睛】本题主要考查了循环结构的程序框图的结果的计算与输出,其中解答中执行程序框图,逐次计算,根据判断条件终止循环是解答的关键,着重考查了运算与求解能力,属于基础题.7、B【解析】
根据题意可得平面,,则即异面直线与所成的角,连接CG,在中,,易得,所以,所以,故选B.8、A【解析】
由复数z求得点Z的坐标,得到向量的坐标,逆时针旋转,得到向量的坐标,则对应的复数可求.【详解】解:∵复数z=i(i为虚数单位)在复平面中对应点Z(0,1),
∴=(0,1),将绕原点O逆时针旋转得到,
设=(a,b),,则,即,
又,解得:,∴,对应复数为.故选:A.【点睛】本题考查复数的代数表示法及其几何意义,是基础题.9、B【解析】
由等比数列的性质求得,再由对数运算法则可得结论.【详解】∵数列是等比数列,∴,,∴.故选:B.【点睛】本题考查等比数列的性质,考查对数的运算法则,掌握等比数列的性质是解题关键.10、A【解析】
设,延长至,使得,连,可证,得到(或补角)为所求的角,分别求出,解即可.【详解】设,延长至,使得,连,在直三棱柱中,,,四边形为平行四边形,,(或补角)为直线与所成的角,在中,,在中,,在中,,在中,,在中,.
故选:A.【点睛】本题考查异面直线所成的角,要注意几何法求空间角的步骤“做”“证”“算”缺一不可,属于中档题.11、D【解析】
直接相乘,得,由共轭复数的性质即可得结果【详解】∵∴其共轭复数为.故选:D【点睛】熟悉复数的四则运算以及共轭复数的性质.12、D【解析】
根据函数为上的奇函数可得,由函数的对称轴及单调性即可确定的值,进而确定函数的解析式,即可求得的值.【详解】函数(,)是上的奇函数,则,所以.又的图象关于直线对称可得,,即,,由函数的单调区间知,,即,综上,则,.故选:D【点睛】本题考查了三角函数的图象与性质的综合应用,由对称轴、奇偶性及单调性确定参数,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由题意求出圆的对称圆的圆心坐标,求出对称圆的圆坐标到抛物线上的点的距离的最小值,减去半径即可得到的最小值.【详解】假设圆心关于直线对称的点为,则有,解方程组可得,所以曲线的方程为,圆心为,设,则,又,所以,,即,所以,故答案为:.【点睛】该题考查的是有关动点距离的最小值问题,涉及到的知识点有点关于直线的对称点,点与圆上点的距离的最小值为到圆心的距离减半径,属于中档题目.14、2【解析】
变换得到,展开式的通项为,计算得到答案.【详解】,的展开式的通项为:.含项的系数为:.故答案为:.【点睛】本题考查了二项式定理的应用,意在考查学生的计算能力和应用能力.15、【解析】由图可知,当直线y=kx在直线OA与x轴(不含它们)之间时,y=kx与y=f(x)的图像有两个不同交点,即方程有两个不相同的实根.16、【解析】
根据题意,设,则,所以,解得,所以,从而有.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)利用正弦定理将目标式边化角,结合倍角公式,即可整理化简求得结果;(2)由面积公式,可以求得,再利用余弦定理,即可求得,结合即可求得周长.【详解】(1)由题设得.由正弦定理得∵∴,所以或.当,(舍)故,解得.(2),从而.由余弦定理得.解得.∴.故三角形的周长为.【点睛】本题考查由余弦定理解三角形,涉及面积公式,正弦的倍角公式,应用正弦定理将边化角,属综合性基础题.18、(Ⅰ).(Ⅱ)见解析.【解析】
(Ⅰ)人中很幸福的有人,可以先计算其逆事件,即人都认为不很幸福的概率,再用减去人都认为不很幸福的概率即可;(Ⅱ)根据题意,随机变量,列出分布列,根据公式求出期望即可.【详解】(Ⅰ)设事件抽出的人至少有人是“很幸福”的,则表示人都认为不很幸福(Ⅱ)根据题意,随机变量,的可能的取值为;;;所以随机变量的分布列为:所以的期望【点睛】本题考查了离散型随机变量的概率分布列,数学期望的求解,概率分布中的二项分布问题,属于常规题型.19、(1)见解析(2)平面.见解析【解析】
(1)要证平面,只需证明,,即可求得答案;(2)连接交于点,连接,根据已知条件求证,即可判断与平面的位置关系,进而求得答案.【详解】(1),为边的中点,,平面平面,平面平面,平面,平面,,在内,,为所在边的中点,,又,,平面.(2)判断可知,平面,证明如下:连接交于点,连接.、、分别为边、、的中点,.又是的重心,,,平面,平面,平面.【点睛】本题主要考查了求证线面垂直和线面平行,解题关键是掌握线面垂直判定定理和线面平行判断定理,考查了分析能力和空间想象能力,属于中档题.20、(1).(2)答案见解析【解析】
(1)利用绝对值不等式的性质即可求得最小值;(2)利用分析法,只需证明,两边平方后结合即可得证.【详解】(1),当且仅当时取等号,∴的最小值;(2)证明:依题意,,要证,即证,即证,即证,即证,又可知,成立,故原不等式成立.【点睛】本题考查用绝对值三角不等式求最值,考查用分析法证明不等式,在不等式不易证明时,可通过执果索因的方法寻找结论成立的充分条件,完成证明,这就是分析法.21、(1)的值为或.(2)【解析】
(1)分类讨论,当时,线段与抛物线没有公共点,设点在抛物线准线上的射影为,当三点共线时,能取得最小值,利用抛物线的焦半径公式即可求解;当时,线段与抛物线有公共点,利用两点间的距离公式即可求解.(2)由题意可得轴且设,则,代入抛物线方程求出,再利用三角形的面积公式即可求解.【详解】由题,,若线段与抛物线没有公共点,即时,设点在抛物线准线上的射影为,则三点共线时,的最小值为,此时若线段与抛物线有公共点,即时,则三点共线时,的最小值为:,此时综上,实数的值为或.因为,所以轴且设,则,代入抛物线的方程解得于是,所以【点睛】本题考查了抛物线的焦半径公式、直线与抛物线的位置关系中的面积问题,属于中档题.22、(1)答案不唯一,具体见解析(2)【解析】
(1)由于函数,得出,分类讨论当和时,的正负,进而得出的单调性;(2)求出,令,得,设,通过导函数,可得出在上的单调性和值域,再分类讨论和时,的单调性,再结合,恒成立,即可求出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《水健康知识》课件
- 计算机软件及应用晕晕课件
- 《呼吸内科医生培训》课件
- 河南省周口市太康县灵运初级中学2024-2025学年九年级上学期1月期末考试语文试题(含答案)
- 单位管理制度展示大全【人力资源管理篇】
- 单位管理制度收录大合集【人事管理篇】
- Module 2 Unit 3 课后培优分级练(解析版)
- 2025无偿保管合同协议书
- 2025年冷热箱项目可行性研究报告
- 集中喷涂可行性研究报告
- GB/T 44990-2024激光熔覆修复层界面结合强度试验方法
- 四川省成都市2023-2024学年高二上学期期末调研考试语文试题(解析版)
- ps经典课程-海报设计(第六讲)
- 江苏省泰州市2023-2024学年高一上学期期末语文试题及答案
- 【MOOC】工程制图解读-西安交通大学 中国大学慕课MOOC答案
- 期末复习(试题)-2024-2025学年三年级上册数学苏教版
- 能源岗位招聘笔试题及解答(某大型国企)2024年
- 浙江省杭州市西湖区2023-2024学年九年级上学期期末语文试题(解析版)
- 人员车辆物品进出管理考核试卷
- 山区道路安全驾驶
- 内镜中心年终总结和计划
评论
0/150
提交评论