2024年中考数学专题训练 专题04“一线三垂直”模型及其变形的应用(知识解读)_第1页
2024年中考数学专题训练 专题04“一线三垂直”模型及其变形的应用(知识解读)_第2页
2024年中考数学专题训练 专题04“一线三垂直”模型及其变形的应用(知识解读)_第3页
2024年中考数学专题训练 专题04“一线三垂直”模型及其变形的应用(知识解读)_第4页
2024年中考数学专题训练 专题04“一线三垂直”模型及其变形的应用(知识解读)_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题04“一线三垂直”模型及其变形的应用(知识解读)【专题说明】一线三垂直问题,通常问题中有一线段绕某一点旋转90°,或者问题中有矩形或正方形的情况下考虑,作辅助线,构造全等三角形形或相似三角形,建立数量关系使问题得到解决。【方法技巧】模型1“全等型”一线三垂直模型如图一,∠D=∠BCA=∠E=90°,BC=AC。结论:Rt△BDC≌Rt△CEA图1应用:(1)通过证明全等实现边角关系的转化,便于解决对应的几何问题;(2)平面直角坐标系中有直角求点的坐标,可以考虑作辅助线构造“三垂直”作辅助线的程序:过直角顶点再直角外部作水平线或竖直线,过另外两个顶点向上述直线作垂线段,即可得到“三垂直”模型。如下图所示模型2“相似型”一线三垂直模型如图,∽(一线三直角)应用:(1)“相似型”三垂直基本应用平面直角坐标系中构造“相似型”三垂直。作辅助线方法和模型1一样(3)平面直角坐标系中运动成直角【典例分析】【应用1“全等型”三垂直基本应用】【典例1】在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.【变式1-1】如图,AC=CE,∠ACE=90°,AB⊥BD,ED⊥BD,AB=6cm,DE=2cm,则BD等于()A.6cm B.8cm C.10cm D.4cm【变式1-2】在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,过点B、C分别作l的垂线,垂足分别为点D、E.(1)特例体验:如图①,若直线l∥BC,AB=AC=,分别求出线段BD、CE和DE的长;(2)规律探究:(Ⅰ)如图②,若直线l从图①状态开始绕点A旋转α(0<α<45°),请探究线段BD、CE和DE的数量关系并说明理由;(Ⅱ)如图③,若直线l从图①状态开始绕点A顺时针旋转α(45°<α<90°),与线段BC相交于点H,请再探线段BD、CE和DE的数量关系并说明理由;(3)尝试应用:在图③中,延长线段BD交线段AC于点F,若CE=3,DE=1,求S△BFC.【应用2平面直角坐标系中构造“全等型”三垂直】【典例2】已知:在平面直角坐标系中,A为x轴负半轴上的点,B为y轴负半轴上的点.(1)如图1,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC,若OA=2,OB=4,求C点的坐标;(2)如图2,若点A的坐标为(﹣2,0),点B的坐标为(0,﹣m),点D的纵坐标为n,以B为顶点,BA为腰作等腰Rt△ABD.当B点沿y轴负半轴向下运动且其他条件都不变时,整式4m+4n﹣9的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(3)如图3,若OA=OB,OF⊥AB于点F,以OB为边作等边△OBM,连接AM交OF于点N,若AN=m,ON=n,请直接写出线段AM的长.【变式2-1】如图所示,在平面直角坐标系中,等腰Rt△ABC的直角顶点C在x轴上,点A在y轴上,若点B坐标为(6,1),则点A坐标为()A.(4,0) B.(5,0) C.(0,4) D.(0,5)【变式2-2】如图,在△PMN中,PM=PN,PM⊥PN,P(0,2),N(2,﹣2),则M的坐标是()A.(﹣2,0) B.(﹣2,0) C.(﹣2,0) D.(﹣4,0)【应用3“相似型”三垂直基本应用】【典例3】已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于点O,连接AP、OP、OA.(1)求证:=;(2)若OP与PA的比为1:2,求边AB的长.【变式3】如图,在矩形ABCD中,E,F,G分别在AB,BC,CD上,DE⊥EF,EF⊥FG,BE=3,BF=2,FC=6,则DG的长是()A.4 B. C. D.5【应用4平面直角坐标系中构造“相似型”三垂直】【典例4】如图,在平面直角坐标系中,点O为坐标原点,直线y=kx+2与y轴交于点A,与x轴交于点B,且OB=2OA.(1)如图1,求直线的解析式;(2)如图2,点P在第三象限的直线AB上,点C在点A上方的y轴上,连接PC、BC,PC交x轴于点N,且tan∠APC=,设点P的横坐标为t,△ABC的面积为S,求S与t的函数关系;(3)如图3,在(2)的条件下,点D在y轴的负半轴上,点E为AB的中点,连接DE、PD,AD=ON,当∠PDE=∠PCD时,求点D的坐标.【变式4】(2022•禅城区二模)如图,抛物线经过原点O,对称轴为直线x=2且与x轴交于点D,直线l:y=﹣2x﹣1与y轴交于点A,与抛物线有且只有一个公共点B,并且点B在第四象限,直线l与直线x=2交于点C.(1)连接AD,求证:AD⊥AC.(2)求抛物线的函数关系式.(3)在直线l上有一点动点P,抛物线上有一动点Q,当△PBQ是以PQ为斜边的等腰直角三角形时,直接写出此时点P的坐标.【应用5平面直角坐标系中运动成直角】【典例5】如图,已知抛物线y=﹣x2+与x轴交于点A、B,与y轴交于点C.(1)则点A的坐标为,点B的坐标为,点C的坐标为;(2)设点P(x1,y1),Q(x2,y2)(其中x1>x2)都在抛物线上,若x1+x2=1,请证明:y1>y2;(3)已知点M是线段BC上的动点,点N是线段BC上方抛物线上的动点,若∠CNM=90°,且△CMN与△OBC相似,试求此时点N的坐标.【变式5】(2022•碑林区校级四模)如图,在平面直角坐标系中,抛物线C1:y=ax2+bx+c交x轴于点A(﹣5,0),B(﹣1,0),交y轴于点C(0,5).(1)求抛物线C1的表达式和顶点D的坐标.(2)将抛物线C1关于y轴对称的抛物线记作C2,点E为抛物线C2上一点若△DOE是以DO为直角边的直角三角形,求点E的坐标.专题04“一线三垂直”模型及其变形的应用(知识解读)【专题说明】一线三垂直问题,通常问题中有一线段绕某一点旋转90°,或者问题中有矩形或正方形的情况下考虑,作辅助线,构造全等三角形形或相似三角形,建立数量关系使问题得到解决。【方法技巧】模型1“全等型”一线三垂直模型如图一,∠D=∠BCA=∠E=90°,BC=AC。结论:Rt△BDC≌Rt△CEA图1应用:(1)通过证明全等实现边角关系的转化,便于解决对应的几何问题;(2)平面直角坐标系中有直角求点的坐标,可以考虑作辅助线构造“三垂直”作辅助线的程序:过直角顶点再直角外部作水平线或竖直线,过另外两个顶点向上述直线作垂线段,即可得到“三垂直”模型。如下图所示模型2“相似型”一线三垂直模型如图,∽(一线三直角)应用:(1)“相似型”三垂直基本应用平面直角坐标系中构造“相似型”三垂直。作辅助线方法和模型1一样(3)平面直角坐标系中运动成直角【典例分析】【应用1“全等型”三垂直基本应用】【典例1】在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.【解答】(1)证明:①∵∠ACD+∠BCE=90°∠DAC+∠ACD=90°,∴∠DAC=∠BCE.又AC=BC,∠ADC=∠BEC=90°,∴△ADC≌△CEB.②∵△ADC≌△CEB,∴CD=BE,AD=CE.∴DE=CE+CD=AD+BE.(2)△ADC≌△CEB成立,DE=AD+BE.不成立,此时应有DE=AD﹣BE.证明:∵∠ACD+∠BCE=90°∠DAC+∠ACD=90°,∴∠DAC=∠BCE.又AC=BC,∠ADC=∠BEC=90°,∴△ADC≌△CEB.∴CD=BE,AD=CE.∴DE=AD﹣BE.【变式1-1】如图,AC=CE,∠ACE=90°,AB⊥BD,ED⊥BD,AB=6cm,DE=2cm,则BD等于()A.6cm B.8cm C.10cm D.4cm【答案】B【解答】解:∵AB⊥BD,ED⊥BD,∴∠B=∠D=∠ACE=90°,∴∠BAC+∠ACB=90°,∠ACB+∠ECD=90°,∴∠BAC=∠ECD,∵在Rt△ABC与Rt△CDE中,,∴Rt△ABC≌Rt△CDE(AAS),∴BC=DE=2cm,CD=AB=6cm,∴BD=BC+CD=2+6=8cm,故选:B.【变式1-2】在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,过点B、C分别作l的垂线,垂足分别为点D、E.(1)特例体验:如图①,若直线l∥BC,AB=AC=,分别求出线段BD、CE和DE的长;(2)规律探究:(Ⅰ)如图②,若直线l从图①状态开始绕点A旋转α(0<α<45°),请探究线段BD、CE和DE的数量关系并说明理由;(Ⅱ)如图③,若直线l从图①状态开始绕点A顺时针旋转α(45°<α<90°),与线段BC相交于点H,请再探线段BD、CE和DE的数量关系并说明理由;(3)尝试应用:在图③中,延长线段BD交线段AC于点F,若CE=3,DE=1,求S△BFC.【解答】解:(1)在△ABC中,∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵l∥BC,∴∠DAB=∠ABC=45°,∠CAE=∠ACB=45°,∴∠DAB=∠ABD=45°,∠EAC=∠ACE=45°,∴AD=BD,AE=CE,∵AB=AC=,∴AD=BD=AE=CE=1,∴DE=2;(2)(Ⅰ)DE=BD+CE.理由如下:在Rt△ADB中,∠ABD+∠BAD=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∴∠ABD=∠CAE,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS);∴CE=AD,BD=AE,∴DE=AE+AD=BD+CE.(Ⅱ)DE=BD﹣CE.理由如下:在Rt△ADB中,∠ABD+∠BAD=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∴∠ABD=∠CAE,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS);∴CE=AD,BD=AE,∴DE=AE﹣AD=BD﹣CE.(3)由(2)可知,∠ABD=∠CAE,DE=AE﹣AD=BD﹣CE∵∠BAC=∠ADB=90°,∴△ABD∽△FBA,∴AB:FB=BD:AB,∵CE=3,DE=1,∴AE=BD=4,∴AB=5.∴BF=.∴S△BFC=S△ABC﹣S△ABF=×52﹣×3×=.【应用2平面直角坐标系中构造“全等型”三垂直】【典例2】已知:在平面直角坐标系中,A为x轴负半轴上的点,B为y轴负半轴上的点.(1)如图1,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC,若OA=2,OB=4,求C点的坐标;(2)如图2,若点A的坐标为(﹣2,0),点B的坐标为(0,﹣m),点D的纵坐标为n,以B为顶点,BA为腰作等腰Rt△ABD.当B点沿y轴负半轴向下运动且其他条件都不变时,整式4m+4n﹣9的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(3)如图3,若OA=OB,OF⊥AB于点F,以OB为边作等边△OBM,连接AM交OF于点N,若AN=m,ON=n,请直接写出线段AM的长.【解答】解:(1)如图1,过点C作CQ⊥OA于点Q,∴∠AQC=90°∵△ABC等腰直角三角形,∴AC=AB,∠CAB=90°,∴∠ACQ=∠BAO.∴△AQC≌△BOA(AAS),∴CQ=AO,AQ=BO.∵OA=2,OB=4,∴CQ=2,AQ=4,∴OQ=6,∴C(﹣6,﹣2).(2)整式4m+4n﹣9的值不会变化.理由如下:如图2,过点D作DP⊥OB于点P,∴∠BPD=90°,∵△ABD等腰Rt△,∴AB=BD,∠ABD=∠ABO+∠OBD=90°,∴∠ABO=∠BDP,∴△AOB≌△BPD(AAS),∴AO=BP,∵BP=OB﹣PO=m﹣(﹣n)=m+n,∴A(﹣2,0),∴OA=2,∴m+n=2,∴当B点沿y轴负半轴向下运动时AO=BP=m+n=2,∴4m+4n﹣9=4×﹣9=﹣,∴整式4m+4n﹣9的值不变,为﹣.(3)AM=2m+n.证明:如图3,在MA上截取MG=ON,连接BG,∵△OBM是等边三角形,∴BO=BM=MO,∠OBM=∠OMB=∠BOM=60°,∴AO=MO,∠ABM=105°,∠HOM=30°,∵OA=OB,∴OA=OM=BM.∴∠OAN=∠AMO=15°,∴∠BAM=30°,∠BMA=45°,∵OF⊥AB,∴∠AOF=45°,∴∠AOF=∠BMA.∴△ANO≌△BGM(AAS),∴BG=AN.∵ON=MG,∴∠GBM=∠OAN,∴∠GBM=15°,∴∠ABG=90°∴2BG=AG,∴2AN=AG,∵AG=AM﹣GM,∴2AN+ON=AM,即AM=2m+n.【变式2-1】如图所示,在平面直角坐标系中,等腰Rt△ABC的直角顶点C在x轴上,点A在y轴上,若点B坐标为(6,1),则点A坐标为()A.(4,0) B.(5,0) C.(0,4) D.(0,5)【答案】D【解答】解:作BD⊥x轴于D,∵B(6,1),∴BD=1,OD=6,∵△ABC是等腰直角三角形,∴AC=BC,∠ACB=90°,∴∠ACO+∠BCD=90°,∵∠ACO+∠OAC=90°,∴∠BCD=∠OAC,∵∠AOC=∠BDO,∴△ACO≌△CBD(AAS),∴OC=BD=1,CD=OA=5,∴A(0,5),故选:D.【变式2-2】如图,在△PMN中,PM=PN,PM⊥PN,P(0,2),N(2,﹣2),则M的坐标是()A.(﹣2,0) B.(﹣2,0) C.(﹣2,0) D.(﹣4,0)【答案】D【解答】解:过点N作ND⊥y轴于点D,∵P(0,2),N(2,﹣2),∴OP=2,OD=2,DN=2,∴PD=4,∵PM⊥PN,∴∠MPN=90°,∴∠MPO+∠DPN=90°,又∵∠DPN+∠PND=90°,∴∠MPO=∠PND,又∵∠MOP=∠PDN=90°,∴△MOP≌△PDN(AAS),∴OM=PD=4,∴M(﹣4,0),故选:D.【应用3“相似型”三垂直基本应用】【典例3】已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于点O,连接AP、OP、OA.(1)求证:=;(2)若OP与PA的比为1:2,求边AB的长.【解答】(1)证明:由折叠的性质可知,∠APO=∠B=90°,∴∠APD+∠OPC=90°,∵四边形ABCD为矩形,∴∠D=∠C=90°,∴∠POC+∠OPC=90°,∴∠APD=∠POC,∴△OCP∽△PDA,∴=;(2)解:∵△OCP∽△PDA,∴,∵OP与PA的比为1:2,AD=8,∴,∴PC=4,设AB=x,则DC=x,AP=x,DP=x﹣4,在Rt△APD中,AP2=AD2+PD2,∴x2=82+(x﹣4)2,解得:x=10,∴AB=10.【变式3】如图,在矩形ABCD中,E,F,G分别在AB,BC,CD上,DE⊥EF,EF⊥FG,BE=3,BF=2,FC=6,则DG的长是()A.4 B. C. D.5【解答】解:∵EF⊥FG,∴∠EFB+∠GFC=90°,∵四边形ABCD为矩形,∴∠A=∠B=∠C=90°,AB=CD,∴∠GFC+∠FGC=90°,∴∠EFB=∠FGC,∴△EFB∽△FGC,∴,∵BE=3,BF=2,FC=6,∴,∴CG=4,同理可得△DAE∽△EBF,∴,∴,∴AE=,∴BA=AE+BE=+3=,∴DG=CD﹣CG=﹣4=.故选:B.【应用4平面直角坐标系中构造“相似型”三垂直】【典例4】如图,在平面直角坐标系中,点O为坐标原点,直线y=kx+2与y轴交于点A,与x轴交于点B,且OB=2OA.(1)如图1,求直线的解析式;(2)如图2,点P在第三象限的直线AB上,点C在点A上方的y轴上,连接PC、BC,PC交x轴于点N,且tan∠APC=,设点P的横坐标为t,△ABC的面积为S,求S与t的函数关系;(3)如图3,在(2)的条件下,点D在y轴的负半轴上,点E为AB的中点,连接DE、PD,AD=ON,当∠PDE=∠PCD时,求点D的坐标.【解答】解:(1)∵直线y=kx+2与y轴交于点A,与x轴交于点B,令x=0,则y=2,∴点A的坐标为(0,2),∴OA=2,∵OB=2OA,∴OB=4,∴B(﹣4,0),将(﹣4,0)代入y=kx+2得:0=﹣4k+2,解得:k=,∴直线的解析式为:y=;(2)过点A作EA⊥AB交PC于点E,过E点作EG⊥y轴,垂足为G,过点P作PF⊥y轴,垂足为F,∵∠PAE=90°,∴∠PAF+∠EAG=90°,∵∠PAF+∠APF=90°,∴∠APF=∠EAG,∵∠EGA=∠AFP=90°,∴△AEG∽△PAF,∵tan∠APC=,∴==,设P(t,),则PF=﹣t,AF=﹣,∴AG==﹣,EG==﹣,∵点A的坐标为:(0,2),∴E(),设PE的解析式为:y=ax+b,由P(t,),E()可得:,解得:,∴C(0,2﹣),∴AC=2﹣﹣2=﹣,∵BO=4,∴S==﹣t,(3)作EF⊥DE交PD于F,过点E作EG⊥y轴于点G,作FH⊥EG于H,由(2)得直线PC的解析式:y=x+(2﹣),∴∠PCO=45°,∴ON=OC=2﹣,∴AD=ON=2﹣,∴D(0,),∵∠PDE=∠PCD=45°,∴△DEG≌△EFH(AAS).∴EG=FH=2,DG=EH=1﹣,∴F(),设PD的解析式为:y=mx+n,由P(t,)、D(0,)可得:,解得:,∴PD的解析式为:y=,把点F(﹣3+)代入y=得:t1=﹣6,t2=2(舍去),∴D(0,﹣3).【变式4】(2022•禅城区二模)如图,抛物线经过原点O,对称轴为直线x=2且与x轴交于点D,直线l:y=﹣2x﹣1与y轴交于点A,与抛物线有且只有一个公共点B,并且点B在第四象限,直线l与直线x=2交于点C.(1)连接AD,求证:AD⊥AC.(2)求抛物线的函数关系式.(3)在直线l上有一点动点P,抛物线上有一动点Q,当△PBQ是以PQ为斜边的等腰直角三角形时,直接写出此时点P的坐标.【解答】解:(1)如图1,过点C作CE⊥y轴于点E,则∠AEC=∠DOA=90°,∵直线y=﹣2x﹣1与y轴交于点A,与直线x=2交于点C,∴A(0,﹣1),C(2,﹣5),∴E(0,﹣5),∴OA=1,OD=2,CE=2,AE=4,∴=,==,∴=,∵∠AEC=∠DOA,∴△AEC∽△DOA,∴∠CAE=∠ADO,∵∠ADO+∠DAO=90°,∴∠CAE+∠DAO=90°,∴∠DAC=180°﹣(∠CAE+∠DAO)=180°﹣90°=90°,∴AD⊥AC.(2)设抛物线的函数关系式为y=ax2+bx,∵对称轴为直线x=2,∴=2,∴b=﹣4a,∴y=ax2﹣4ax,由ax2﹣4ax=﹣2x﹣1,整理得ax2+(2﹣4a)x+1=0,∵直线y=﹣2x﹣1与抛物线有且只有一个公共点B,∴Δ=(2﹣4a)2﹣4a=0,解得:a1=,a2=1,当a=时,抛物线解析式为y=x2﹣x,联立得x2﹣x=﹣2x﹣1,解得:x1=x2=﹣2,∴B(﹣2,3)与点B在第四象限矛盾,故a=不符合题意,舍去,当a=1时,y=x2﹣4x,联立得x2﹣4x=﹣2x﹣1,解得:x1=x2=1,∴B(1,﹣3),点B在第四象限符合题意,∴a=1,∴该抛物线的函数关系式为y=x2﹣4x.(3)如图2,过点B作BQ⊥AB交抛物线于点Q,作GH∥x轴交y轴于点G,过点Q作QH⊥GH,则∠AGB=∠BHQ=∠ABQ=90°,∴∠ABG+∠QBH=∠ABG+∠BAG=90°,∴∠QBH=∠BAG,∴△ABG∽△BQH,∴=,设Q(t,t2﹣4t),∵A(0,﹣1),B(1,﹣3),∴AG=2,BG=1,BH=t﹣1,QH=t2﹣4t+3,∴=,解得:t=1(舍去)或t=,∴BH=﹣1=,QH=()2﹣4×+3=,过点B作EF∥y轴,过点P1作P1E⊥EF,过点P2作P2F⊥EF,∵△PBQ是以PQ为斜边的等腰直角三角形,∴P1B=BQ=P2B,∵∠P1BE+∠EBQ=∠EBQ+∠QBH=90°,∴∠P1BE=∠QBH,∵∠BEP1=∠BHQ=90°,∴△BEP1≌△BHQ(AAS),∴EP1=QH=,BE=BH=,∴P1(﹣,﹣),同理可得:P2(,﹣),综上,点P的坐标为P1(﹣,﹣),P2(,﹣).【应用5平面直角坐标系中运动成直角】【典例5】如图,已知抛物线y=﹣x2+与x轴交于点A、B,与y轴交于点C.(1)则点A的坐标为,点B的坐标为,点C的坐标为;(2)设点P(x1,y1),Q(x2,y2)(其中x1>x2)都在抛物线上,若x1+x2=1,请证明:y1>y2;(3)已知点M是线段BC上的动点,点N是线段BC上方抛物线上的动点,若∠CNM=90°,且△CMN与△OBC相似,试求此时点N的坐标.【解答】(1)证明:当x=0时,y=2,∴点C(0,2),当y=0时,﹣x2+=0,解得:x=﹣1或x=4,∴点A(﹣1,0),B(4,0).(2)证明:由题意得:y1﹣y2=﹣x12+x1+2﹣(﹣x22+x2+2)=x22﹣x12+x1﹣x2=(x2+x1)(x2﹣x1)+(x1﹣x2),∵x1+x2=1,∴y1﹣y2=x1﹣x2,又∵x1>x2,∴y1>y2.(3)解:设直线BC的解析式为y=kx+b,则,解得:,∴直线BC的解析式为y=﹣x+2,如图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论