版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学必求其心得,业必贵于专精学必求其心得,业必贵于专精学必求其心得,业必贵于专精§X4.3电磁感应中的综合问题分析[学习目标]1.电磁感应与电路的综合问题2.电磁感应中的力和运动问题3.电磁感应中的能量转化问题4.电磁感应中的图象问题[自主学习]电磁感应综合应用的中心是法拉第电磁感应定律,近年来的高考中,电磁感应的考查主要是通过法拉第电磁感应定律再综合力、静电场、直流电路、磁场等知识内容,有机地把力与电磁结合起来,具体反映在以下几个方面:1.以电磁感应现象为核心,综合应用力学各种不同的规律(如牛顿运动定律、动能定理)等内容形成的综合类问题.通常以导体棒或线圈为载体,分析导体棒在磁场中因电磁感应现象对运动情况的影响,解决此类问题的关键在于运动情况的分析,特别是最终稳定状态的确定,利用物体的平衡条件可求最大速度之类的问题,利用能量观点可分析双导体棒运动情况.2.电磁感应与电路的综合问题,关键在于电路结构的分析,能正确画出等效电路图,并结合电学知识进行分析、求解.求解过程中首先要注意电源的确定.通常将切割磁感线的导体或磁通量发生变化的回路作为等效电源.若产生感应电动势是由几个相互联系部分构成时,可视为电源的串联与并联.其次是要能正确区分内、外电路,通常把产生感应电动势那部分电路视为内电路.最后应用全电路欧姆定律及串并联电路的基本性质列方程求解.3.电磁感应中的能量转化问题,电磁感应过程实质是不同形式的能量转化的过程,而能量的转化则是通过安培力做功的形式而实现的,安培力做功的过程,是电能转化为其他形式的能的过程,“外力”克服安培力做功,则是其他形式的能转化为电能的过程.求解过程中主要从以下三种思路进行分析:①利用安培力做功求解,电磁感应中产生的电能等于克服安培力所做的功.注意安培力应为恒力.②利用能量守恒求解,开始的机械能总和与最后的机械能总和之差等于产生的电能.适用于安培力为变力.③利用电路特征来求解,通过电路中所产生的电能来计算.4.电磁感应中的图象问题,电磁感应的图象主要包括B—t图象、Φ-t图象、E-t图象和I—t图象,还可能涉及感应电动势E和感应电流I随线圈位移x变化的图象,即E—x图象和I—x图象.一般又可把图象问题分为两类:①由给定的电磁感应过程选出或画出正确的图象.②由给定的有关图象分析电磁感应过程,求解相应的物理量.解答电磁感应中的图象问题的基本方法是利用右手定则、楞次定律和法拉第电磁感应定律等规律分析解答.一、电磁感应与电路知识的综合1.解题思路(1)明确电源的电动势(交流电).
(2)明确电源的正、负极:根据电源内部电流的方向是从负极流向正极,即可确定“电源"的正、负极.
(3)明确电源的内阻:相当于电源的那部分电路的电阻。
(4)明确电路关系:即构成回路的各部分电路的串、并联关系。(5)画出等效电路结合闭合电路的欧姆定律:结合电功、电功率等能量关系列方程求解.
2.注意问题
在分析电磁感应中的电路问题时,要注意全面分析电路中的电动势。
(1)在有些问题当中,轨道上有两根金属棒,且两棒均切割磁感线产生感应电动势,此时应充分考虑这两个电动势,将它们求和(同向时)或求差(反向时)。
(2)有些题目中虽只有一根棒切割磁感线,但同时磁场也发生变化,则此时电路中也有两个感应电动势,一个是动生电动势,一个是感生电动势,应求和(同向时)或求差(反向时)。
[典型例题]例题1.图中EF、GH为平行的金属导轨,其电阻可不计,R为电阻器,C为电容器,AB为可在EF和GH上滑动的导体横杆。有均匀磁场垂直于导轨平面。若用和分别表示图中该处导线中的电流,则当横杆AB()
A.匀速滑动时,=0,=0B.匀速滑动时,≠0,≠0
C.加速滑动时,=0,=0D.加速滑动时,≠0,≠0
例题2.如图18(a)所示,一个电阻值为R,匝数为n的圆形金属线与阻值为2R的电阻R1连结成闭合回路。线圈的半径为r1.在线圈中半径为r2的圆形区域存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图18(b)所示。图线与横、纵轴的截距分别为t0和B0.导线的电阻不计。求0至t1时间内(1)通过电阻R1上的电流大小和方向;(2)通过电阻R1上的电量q及电阻R1上产生的热量.二、电磁感应中的力和运动电磁感应和力学问题的综合,其联系桥梁是磁场对感应电流的安培力,因为感应电流与导体运动的加速度有相互制约的关系,这类问题中的导体一般不是做匀变速运动,而是经历一个动态变化过程再趋于一个稳定状态,故解决这类问题时正确进行动态分析确定最终状态是解题的关键.
1.受力情况、运动情况的动态分析思路
导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……周而复始地循环,直至最终达到稳定状态,此时加速度为零,而速度v通过加速达到最大值,做匀速直线运动或通过减速达到稳定值做匀速直线运动。
2.解决此类问题的基本步骤
(1)用法拉第电磁感应定律和楞次定律(包括右手定则)求出感应电动势的大小和方向。
(2)依据全电路欧姆定律,求出回路中的电流。
(3)分析导体的受力情况(包含安培力,可利用左手定则确定所受安培力的方向).
(4)依据牛顿第二定律列出动力学方程或平衡方程,以及运动学方程,联立求解.
一、电磁感应中力学问题,常常以一个导体棒在滑轨上运动问题形式出现.这种情况有两种类型。
1.“电—动—电”类型
如图所示水平放置的光滑平行导轨MN、PQ放有长为l、电阻为R、质量为m的金属棒ab。导轨左端接内电阻不计电动势E的电源形成回路,整个装置放在竖直向上的匀强磁场B之中。导轨电阻不计且足够长,并与电键S串接,当刚闭合电键时,棒ab因电而动,其受安培力,方向向右,此时ab具有最大加速度.然而,ab一旦产生速度,则因动而电,立即产生了感应电动势.因速度决定感应电动势,而感应电动势与电池的电动势反接又导致电流减小,从而使安培力变小,故加速度减小,不难分析ab导体做的是一种复杂的变加速运动。但是当,ab速度将达最大值,故ab运动收尾状态为匀速运动,。
2.“动-电—动”类型
如图所示,平行滑轨PQ、MN,与水平方向成角,长度l、质量m、电阻为R的导体ab紧贴滑轨并与PM平行,滑轨电阻不计。整个装置处于与滑轨平面正交、磁感强度为B的匀强磁场中,滑轨足够长。导体ab由静止释放后,由于重力作用下滑,此时具有最大加速度,ab一旦运动,则因动而电,产生感应电动势,在PMba回路中产生电流,磁场对此电流作用力刚好与下滑力方向反向,随ab棒下滑速度不断增大.
∵E=Blv,,则电路中电流随之变大,安培阻力变大,直到与下滑力的合力为零,即加速度为零,以的最大速度收尾。二、电磁感应中的动力学临界问题的处理方法
此类问题覆盖面广,题型也多样,但解决这类问题的关键在于通过运动状态的分析寻找过程中的临界状态,如速度、加速度取最大值或最小值的条件等,基本思路是:确定电源(E、r)感应电流运动导体所受的安培力合外力a的变化情况运动状态的分析临界状态。
[典型例题]二、电磁感应中的力和运动例题1.水平放置的光滑导轨和间接有电阻R,导轨左右区域分别处于不同方向的匀强磁场中,磁场方向如图所示,磁感应强度分别为和,虚线为两区域的分界线,一根金属棒ab放在导轨上且与其垂直,金属棒与导轨电阻均不计,金属棒在水平向右的恒力F作用下,经过左、右两区域,已知金属棒在左面区域中恰好做速度为v的匀速运动,则金属棒进人入右面区域中,下列说法不正确的是()
A.若,金属棒所受磁场力方向不变,金属棒仍做匀速运动
B.若,金属棒所受磁场力方向改变,金属棒不再做匀速运动
C.若,金属棒先做加速运动,然后以大于v的速度做匀速运动
D.若,恒力F对金属棒做功的功率将先变小后不变
例题2.如图所示,MN、PQ为平行光滑导轨,其电阻忽略不计,与地面成30°角固定.N、Q间接一电阻R′=10Ω,M、P端与电池组和开关组成回路,电动势E=6V,内阻r=1。0Ω,导轨区域加有与两导轨所在平面垂直的匀强磁场.现将一条质量m=10g,电阻R=10Ω的金属导线置于导轨上,并保持导线ab水平.已知导轨间距L=0.1m,当开关S接通后导线ab恰静止不动.(1)试计算磁感应强度的大小.(2)若某时刻将电键S断开,求导线ab能达到的最大速度.(设导轨足够长)三、电磁感应中的能量转化问题1.电磁感应过程往往涉及多种能量的转化
如图所示金属棒ab沿导轨由静止下滑时,重力势能减少,一部分用来克服安培力做功,转化为感应电流的电能,最终在R上转化为焦耳热;另一部分转化为金属棒的动能,若导轨足够长,棒最终达到稳定状态匀速运动时,减小的重力势能完全用来克服安培力做功,转化为感应电流的电能.因此,从功和能的观点入手,分析清楚电磁感应过程中能量转化的关系,是解决电磁感应中能量问题的重要途径之一.
2.安培力做功和电能变化的特定对应关系
“外力”克服安培力做多少功,就有多少其他形式的能转化为电能。同理,安培力做功的过程,是电能转化为其他形式的能的过程,安培力做多少功就有多少电能转化为其他形式的能。
3.解决此类问题的步骤
(1)用法拉第电磁感应定律和楞次定律(包括右手定则)确定感应电动势的大小和方向.
(2)画出等效电路图,写出回路中电阻消耗的电功率的表达式。
(3)分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程,联立求解.
电磁感应与能量知识的综合:
1.电磁感应现象的实质是产生了感应电动势
若电路闭合则产生感应电流.电磁感应现象中出现的电能,一定是由其他形式的能转化而来的。
2.分析时,应当牢牢抓住能量守恒这一基本规律。
因能量转化必须通过做功来实现,为此,应分析清楚有哪些力做了功,就可知道有哪些形式的能量参与了相互转化.
(1)有摩擦力做功,必然有内能出现;
(2)重力做功,就有机械能(重力势能)参与转化;
(3)安培力做负功就将有其他形式能转化为电能,安培力做正功将有电能转化为其他形式的能.3.最后利用能量守恒定律列方程求解。[典型例题]三、电磁感应中的能量转化问题例题1.如图所示,电动机牵引一根原来静止的、长L为1m、质量m为0.1kg的导体棒MN上升,导体棒的电阻R为1Ω,架在竖直放置的框架上,它们处于磁感应强度B为1T的匀强磁场中,磁场方向与框架平面垂直。当导体棒上升h=3.8m时,获得稳定的速度,导体棒上产生的热量为2J,电动机牵引棒时,电压表、电流表的读数分别为7V、1A,电动机内阻r为1Ω,不计框架电阻及一切摩擦,求:(1)棒能达到的稳定速度;(2)棒从静止至达到稳定速度所需要的时间。例题2.如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距,导轨平面与水平面成θ=37°角,下端连接阻值为的电阻.匀强磁场方向与导轨平面垂直.质量为0。2kg、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.(1)求金属棒沿导轨由静止开始下滑时的加速度大小;(2)当金属棒下滑速度达到稳定时,电阻消耗的功率为,求该速度的大小;(3)在上问中,若=2Ω,金属棒中的电流方向由a到b,求磁感应强度的大小与方向.(g取10rn/s2,sin37°=0.6,cos37°=0。8)四、电磁感应中的图象问题1.电磁感应中的图象问题
电磁感应中常涉及磁感应强度B、磁通量、感应电动势E和感应电流I随时间t变化的图象,即B一t图象、一t图象、E一t图象和I一t图象。对于切割磁感线产生感应电动势和感应电流的情况,还常涉及感应电动势E和感应电流I随线圈位移x变化的图象,即E一x图象和I一x图象。
这些图象问题大体上可分为两类:
(1)由给定的电磁感应过程选出或画出正确的图象。
(2)由给定的有关图象分析电磁感应过程,求解相应的物理量.
不管是何种类型,电磁感应中的图象问题常需利用右手定则、楞次定律和法拉第电磁感应定律等规律分析解决.
2.解决此类问题的一般步骤
(1)明确图象的种类。
(2)分析电磁感应的具体过程.
(3)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数方程。
(4)根据函数方程,进行数学分析,如分析斜率的变化、截距等。
(5)画图象或判断图象。
特别提醒:在图象问题中,经常利用类比法,即每一个物理规律在确定研究某两个量的关系后,都能类比成数学函数方程进行分析和研究,如一次函数、二次函数、三角函数等。
分析电磁感应图像的要点:
1.要抓住磁通量的变化是否均匀,从而推知感应电动势(电流)是否大小恒定。用楞次定律判断出感应电动势(或电流)的方向,从而确定其正负,以及在坐标中的范围.
2.分析回路中的感应电动势或感应电流的大小及其变化规律,要利用法拉第电磁感应定律来分析,有些图像还要画出等效电路来辅助分析。
3.要正确理解图像问题,必须能根据图像的定义把图像反映的规律对应到实际过程中去,又能根据实际过程的物理规律进行判断,这样,才抓住了解决图像问题的根本.[典型例题]四、电磁感应中的图象问题例题1.如图所示的虚线上方空间有垂直于线框平面的匀强磁场,直角扇形导线框绕垂直于线框平面的轴O以角速度匀速转动.设线框中感应电流方向以顺时针方向为正方向,那么在图中能正确描述线框从图所示位置开始转动一周的过程中,线框内感应电流随时间变化情况的是()例题2.矩形导线框abcd固定在匀强磁场中,磁感线的方向与导线框所在平面垂直,规定磁场的正方向垂直低面向里,磁感应强度B随时间变化的规律如图所示。若规定顺时针方向为感应电流I的正方向,下列各图中正确的是()五、规律整合1.解决电磁感应现象中力学问题的基本方法与技巧(1)基本方法①用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向;②求出回路的电流强度;③分析研究导体受力情况(包括安培力,用左手定则确定其方向);④列平衡方程或动力学方程求解.(2)解决电磁感应现象中力学问题的技巧①因电磁感应中力和运动问题所给图形大多为立体空间分布图,故在受力分析时,应把立体图转化为平面图,使物体(导体)所受的各力尽可能在同一平面图内,以便正确对力进行分解与合成,利用物体的平衡条件和牛顿运动定律列式求解.②对于非匀变速运动最值问题的分析,注意应用加速度为零,速度达到最值的特点.2.解决电磁感应现象中电路问题的基本方法与分析误区(1)基本方法①确定电源:先判断产生电磁感应现象的那一部分导体,该部分导体可视为等效电源.②分析电路结构,画等效电路图.③利用电路规律求解,主要有欧姆定律,串并联规律等.(2)常见的一些分析误区①不能正确分析感应电动势及感应电流的方向.因产生感应电动势那部分电路为电源部分,故该部分电路中的电流应为电源内部的电流,而外电路中的电流方向仍是从高电势到低电势.②应用欧姆定律分析求解电路时,不注意等效电源的内阻对电路的影响.③对联接在电路中电表的读数不能正确进行分析,特别是并联在等效电源两端的电压表,其示数应该是外电压,而不是等效电源的电动势.3.解决电磁感应现象中能量转化问题的基本方法与要点(1)基本方法①用法拉第电磁感应和楞次定律确定感应电动势的大小和方向.②画出等效电路,求出回路中电阻消耗电功率表达式.③分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程,即能量守恒方程.(2)分析要点分析过程中应当牢牢抓住能量守恒这一基本规律,即分析清楚有哪些力做功,就可知道有哪些形式的能量参与了相互转化,如有摩擦力做功,必然有内能出现;重力做功,就可能有机械能参与转化;安培力做负功就将其它形式能转化为电能,做正功将电能转化为其它形式的能;然后利用能量守恒列出方程求解.4.解决电磁感应现象中图像问题的基本方法与要点(1)基本方法①看清横、纵坐标表示的物理量.②理解图像的物理意义.③画出对应的物理图像(常常采用分段法,数学法来处理).(2)分析要点①定性或定量地表示出所研究问题的函数关系.②注意横、纵坐标表达的物理理,以及各物理量的单位.③在图象中E、I、B等物理量的方向是通过正负值来反映,故确定大小变化的同时,还应确定方向的变化情况.参考答案:一、电磁感应与电路知识的综合例题1.解析:当AB横杆滑动时,AB要切割磁感线,产生感应电动势,整个装置等效电路如图所示的电路.
(1)当AB横杆匀速(无论向左或是向右),则E不变,转变成稳恒电路问题.在这种情况下,R中有电流,而C上有电压,但,电容器极板上的电量的变化,故,所以该支路中无电流.
(2)当AB横杆加速滑动,,E随v增大而增大,在这种情况下,R、C两端电压均增大,,,故,即C应不断充电,所以。综上,选项D正确。
例题2.解析:⑴由图象分析可知,0至时间内由法拉第电磁感应定律有而由闭合电路欧姆定律有联立以上各式解得通过电阻上的电流大小为由楞次定律可判断通过电阻上的电流方向为从b到a⑵通过电阻上的电量通过电阻上产生的热量二、电磁感应中的力和运动例题1.解析:若,则过分界线后由右手定则判断感应电流方向由a指向b,ab受到的磁场力方向不变,大小也不变,所以棒仍做匀速运动;若,则过分界线后,磁场力方向不变,但磁场力变小,所以棒先做加速运动,然后以大于v的速度做匀速运动;若,则过分界线后磁场力方向不变,大小变大,物体做减速运动,最后匀速运动,所以恒力F对棒做功的功率将先变小后不变。故正确选项为B。
例题2.解析:(1)导线ab两端电压V=5V,导线ab中的电流A,导线ab受力如图所示,由平衡条件得,解得,代入数值得B=1T.(2)电键S断开后,导线ab开始加速下滑,当速度为v时,产生的感应电动势为,导线ab中的感应电流A,导线ab受的安培阻力.当导线ab达到最大速度时,,代入数值解得m/s.三、电磁感应中的能量转化问题例题1.解析:(1)电动机的输出功率为:W电动机的输出功率就是电动机牵引棒的拉力的功率,当棒达稳定速度时感应电流解得,棒达到的稳定速度为m/s(2)由能量守恒定律得:解得t=1s例题2.解析:(1)金属棒开始下滑的初速为零,根据牛顿第二定律:①由①式解得=10×(O.6-0.25×0。8)m/s2=4m/s2 ②(2)设金属棒运动达到稳定时,速度为,所受安培力为F,棒在沿导轨方向受力平衡③此时金属棒克服安培力做功的功率等于电路中电阻消耗的电功率:④由③、④两式解得 ⑤(3)设电路中电流为I,两导轨间金属棒的长为l,磁场的磁感应强度为B⑥⑦由⑥、⑦两式解得 ⑧磁场方向垂直导轨平面向上四、电磁感应中的图象问题例题1.解析:从图示位置转过的过程中,扇形回路磁通量始终为零,回路中无感应电流;在转过第二个的过程中,感应电动势。大小不变,则感应电流大小不变,由楞次定律知感应电流方向为逆时针方向,即感应电流为正值;同理,在转过第三个的过程中无感应电流;在转过第四个的过程中,感应电流大小不变,方向为负,故正确选项为A。
例题2.解析:0—1s内B垂直纸面向里均匀增大,则由楞次定律及法拉第电磁感应定律可得线圈中产生恒定的感应电流,方向为逆时针方向,排除A、C选项;2s-3s内,B垂直纸面向外均匀增大,同理可得线圈中产生的感应电流方向为顺时针方向,排除B选项,D正确.电磁感应练习1.如图所示,铁芯右边绕有一个线圈,线圈两端与滑动变阻器、电池组连成回路。左边的铁芯上套有一个环面积为0.02m2、电阻为0.1欧的金属环。铁芯的横截面积为0.01m2,且假设磁场全部集中在铁芯中,金属环与铁芯截面垂直。调节滑动变阻器的滑动头,使铁芯中的磁感应强度每秒均匀增加0.2T,则从上向下看((A)金属环中感应电流方向是逆时针方向,感应电动势大小为4.0×10-3V(B)金属环中感应电流方向是顺时针方向,感应电动势大小为4.0×10—3V(C)金属环中感应电流方向是逆时针方向,感应电动势大小为2.0×10—3V(D)金属环中感应电流方向是顺时针方向,感应电动势大小为2.0×10-3V2。矩形导线框abcd固定在匀强磁场中,磁感线的方向与导线框所在平面垂直,规定磁场的正方向垂直低面向里,磁感应强度B随时间变化的规律如图所示.若规定顺时针方向为感应电流I的正方向,下列各图中正确的是()3.两根足够长的光滑导轨竖直放置,间距为L,底端接阻值为R的电阻。将质量为m的金属棒悬挂在一个固定的轻弹簧下端,金属棒和导轨接触良好,导轨所在平面与磁感应强度为B的匀强磁场垂直,如图所示。除电阻R外其余电阻不计。现将金属棒从弹簧原长位置由静止释放.则()A.释放瞬间金属棒的加速度大于重力加速度gB.金属棒向下运动时,流过电阻R的电流方向为a→bC.金属棒的速度为v时.所受的安培力大小为F=D.电阻R上产生的总热量等于金属棒重力势能的减少4。水平固定放置的足够长的U形金属导轨处于竖直向上的匀强磁场中,在导轨上放着金属棒ab,开始时ab棒以水平初速度v0向右运动,最后静止在导轨上,就导轨光滑和粗糙两种情况比较,这个过程()A.安培力对ab棒所做的功不相等 B.电流所做的功相等C.产生的总内能不相等D.通过ab棒的电量相等5。如图所示,两根相距为的平行直导轨ab、cd、b、d间连有一固定电阻R,导轨电阻可忽略不计.MN为放在ab和cd上的一导体杆,与ab垂直,其电阻也为R。整个装置处于匀强磁场中,磁感应强度的大小为B,磁场方向垂直于导轨所在平面(指向图中纸面内)。现对MN施力使它沿导轨方向以速度v(如图)做匀速运动.令U表示MN两端电压的大小,则()A.流过固定电阻R的感应电流由b到dB.流过固定电阻R的感应电流由d到bC.流过固定电阻R的感应电流由b到dD.流过固定电阻R的感应电流由d到b6.如图所示,固定位置在同一水平面内的两根平行长直金属导轨的间距为d,其右端接有阻值为R的电阻,整个装置处在竖直向上磁感应强度大小为B的匀强磁场中.一质量为m(质量分布均匀)的导体杆ab垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为u。现杆在水平向左、垂直于杆的恒力F作用下从静止开始沿导轨运动距离L时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直)。设杆接入电路的电阻为r,导轨电阻不计,重力加速度大小为g.则此过程()A。杆的速度最大值为B。流过电阻R的电量为C。恒力F做的功与摩擦力做的功之和等于杆动能的变化量D。恒力F做的功与安倍力做的功之和等于杆动能的变化量7.)如图,匀强磁场的磁感应强度方向垂直于纸面向里,大小随时间的变化率,为负的常量.用电阻率为、横截面积为的硬导线做成一边长为的方框.将方框固定于纸面内,其右半部位于磁场区域中.求(1)导线中感应电流的大小;(2)磁场对方框作用力的大小随时间的变化。8。如图所示,顶角θ=45°,的金属导轨MON固定在水平面内,导轨处在方向竖直、磁感应强度为B的匀强磁场中。一根与ON垂直的导体棒在水平外力作用下以恒定速度v0沿导轨MON向右滑动,导体棒的质量为m,导轨与导体棒单位长度的电阻均为r,导体棒与导轨接触点的a和b,导体棒在滑动过程中始终保持与导轨良好接触。t=0时,导体棒位于顶角O处,求:(1)t时刻流过导体棒的电流强度和电流方向。(2)导体棒作匀速直线运动时水平外力F的表达式。(3)导体棒在0~t时间内产生的焦耳热Q.
vBRMN9。如图所示,宽度为L=0。20m的足够长的平行光滑金属导轨固定在绝缘水平面上,导轨的一端连接阻值为R=1。0Ω的电阻。导轨所在空间存在竖直向下的匀强磁场,磁感应强度大小为B=0.50T.一根质量为m=10g的导体棒MN放在导轨上与导轨接触良好,导轨和导体棒的电阻均可忽略不计。现用一平行于导轨的拉力拉动导体棒沿导轨向右匀速运动,运动速度vBRMN(1)在闭合回路中产生的感应电流的大小;(2)作用在导体棒上的拉力的大小;(3)当导体棒移动30cm时撤去拉力,求整个过程中电阻R上产生的热量.10。(14分)如图,光滑的平行金属导轨水平放置,电阻不计,导轨间距为l,左侧接一阻值为R的电阻.区域cdef内存在垂直轨道平面向下的有界匀强磁场,磁场宽度为s。一质量为m,电阻为r的金属棒MN置于导轨上,与导轨垂直且接触良好,受到F=0。5v+0.4(N)(v为金属棒运动速度)的水平力作用,从磁场的左边界由静止开始运动,测得电阻两端电压随时间均匀增大。(已知l=1m,m=1kg,R=0.3,r=0。2,s=1m)(1)分析并说明该金属棒在磁场中做何种运动;(2)求磁感应强度B的大小;(3)若撤去外力后棒的速度v随位移x的变化规律满足v=v0-E
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全生产演练
- 手术前后病人的宣教
- 山东中医药大学《高级运筹学》2023-2024学年第一学期期末试卷
- 山东政法学院《角色与场景设计》2023-2024学年第一学期期末试卷
- 儿童营养需求的重要指南
- 砂出口合同范例
- 临时维修简易合同范例
- 酒店布草转让合同范例
- 山东医学高等专科学校《城乡规划系统工程》2023-2024学年第一学期期末试卷
- 山东杏林科技职业学院《电力系统继电保护课程设计》2023-2024学年第一学期期末试卷
- 02565+24273中医药学概论
- 第十一单元跨学科实践活动10调查我国航天科技领域中新型材料、新型能源的应用教学设计-2024-2025学年九年级化学人教版下册
- 【MOOC】市场调查与研究-南京邮电大学 中国大学慕课MOOC答案
- 2023年中央纪委国家监委机关直属单位招聘工作人员考试真题
- 2024-2025学年度教科版初中物理八年级上册期末模拟卷(含答案)
- 《旅游概论》考试复习题库(附答案)
- 1000亩水产养殖建设项目可行性研究报告
- 量子计算与区块链
- 广东珠海市驾车冲撞行人案件安全防范专题培训
- 2022版ISO27001信息安全管理体系基础培训课件
- 广东省深圳市宝安区多校2024-2025学年九年级上学期期中历史试题
评论
0/150
提交评论