




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
4.2.2等差数列的前n项和公式第四章
数
列第一课时等差数列的前n项和公式学习目标1.掌握等差数列前n项和公式的推导方法.(难点)2.掌握等差数列的前n项和公式,能够运用公式解决相关问题.(重点)3.掌握等差数列的前n项和的简单性质.(重点、难点)创设情境据说,200多年前,高斯的算术老师提出了下面的问题:1+2+3+…+100=?你准备怎么算呢?探究新知高斯(Gauss,1777-1855),德国数学家,近代数学的奠基者之一.他在天文学、大地测量学、磁学、光学等领域都做出过杰出贡献.问题1:为什么1+100=2+99=…=50+51呢?
这是巧合吗?试从数列角度给出解释.
等差数列中,下标和相等的两项和相等.设an=n,则a1=1,a2=2,a3=3,…
探究新知问题2:
你能用上述方法计算1+2+3+…
+101吗?问题3:
你能计算1+2+3+…
+n吗?探究新知需要对项数的奇偶进行分类讨论.
探究新知
问题4:不分类讨论能否得到最终的结论呢?
倒序求和法
公式解析功能1:已知a1,an和n,求Sn.功能2:已知Sn,n,a1
和an中任意3个,求第4个.
典例解析
等差数列中的基本计算(1)利用基本量求值:等差数列的通项公式和前n项和公式中有五个量a1,d,n,an和Sn这五个量可以“知三求二”.一般是利用公式列出基本量a1和d的方程组,解出a1和d,便可解决问题.解题时注意整体代换的思想.(2)结合等差数列的性质解题:等差数列的常用性质:若m+n=p+q(m,n,p,q∈N*),则am+an=ap+aq,常与求和公式Sn=结合使用.跟踪训练
典例解析
一般地,对于等差数列,只要给定两个相互独立的条件,这个数列就完全确定。当堂达标课堂小结4.2.2等差数列的前n项和公式第四章
数
列《第一课时等差数列的前n项和公式》导学案新课程标准解读核心素养1.探索并掌握等差数列的前n项和公式,理解等差数列的前n项和公式和通项公式的关系.数学抽象、数学运算2.能在具体的问题情境中,发现数列的等差关系,并解决相应的问题.数学建模、数学运算4.2.2等差数列的前n项和公第四章
数
列第二课时等差数列前n项和的性质及应用学习目标1.等差数列掌握等差数列前n项和的性质及应用(重点).2.会求等差数列前n项和的最值(重点).课前小测
典例解析例8.某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多两个座位.问第1排应安排多少个座位?
解得a1=21.因此,第1排应安排21个座位.归纳总结1.本题属于与等差数列前n项和有关的应用题,其关键在于构造合适的等差数列.2.遇到与正整数有关的应用题时,可以考虑与数列知识联系,建立数列模型,具体解决要注意以下两点:(1)抓住实际问题的特征,明确是什么类型的数列模型.(2)深入分析题意,确定是求通项公式an,或是求前n项和Sn,还是求项数n.
跟踪训练跟踪训练1.某抗洪指挥部接到预报,24小时后有一洪峰到达,为确保安全,指挥部决定在洪峰到来之前临时筑一道堤坝作为第二道防线.经计算,除现有的参战军民连续奋战外,还需调用20台同型号翻斗车,平均每辆车工作24小时.从各地紧急抽调的同型号翻斗车目前只有一辆投入使用,每隔20分钟能有一辆翻斗车到达,一共可调集25辆,那么在24小时内能否构筑成第二道防线?典例解析
例9.已知等差数列{an}的前n项和为Sn,若a1=10,公差d=-2,Sn是否存在最大值?若存在,求Sn的最大值及取得最大值时n的值;若不存在,请说明理由.
1.在等差数列中,求Sn的最小(大)值的方法:(1)利用通项公式寻求正、负项的分界点,则从第一项起到分界点该项的
各项和为最大(小).(2)借助二次函数的图象及性质求最值.2.寻求正、负项分界点的方法:(1)寻找正、负项的分界点来寻找.(2)利用到y=ax2+bx(a≠0)的对称轴距离最近的左侧的一个正数或离对称轴
最近且关于对称轴对称的两个整数对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 装配式行业追溯软件
- 安徽省定远县育才中学2024-2025学年高三第一次综合测试数学试题试卷含解析
- 大连工业大学《建筑设计1》2023-2024学年第二学期期末试卷
- 辽宁省辽阳市太子河区2025届数学四年级第二学期期末经典试题含解析
- 江西航空职业技术学院《工程数学概率论》2023-2024学年第一学期期末试卷
- 北京信息科技大学《工程管理导论》2023-2024学年第二学期期末试卷
- 长春金融高等专科学校《钢结构设计与施工》2023-2024学年第二学期期末试卷
- 吉林省四平一中等2024-2025学年高三下期末考试英语试题(B卷)含解析
- 2025年哈三中高三下学期开学考试数学试题文试题含解析
- 江苏省无锡市宜兴市周铁区市级名校2024-2025学年初三中考模拟冲刺卷(提优卷)(四)化学试题含解析
- DL∕T 1074-2019 电力用直流和交流一体化不间断电源
- 2023年高三新高考英语复习备考策略及方法指导(深度课件)
- 土方回填施工记录表
- 旋挖钻机基坑支护工程施工隐患排查治理清单
- 空调维保质量保障体系及措施方案
- 平面向量在三角函数中的应用(学案)
- 中药的道地药材课件
- 幼儿园《3-6岁儿童学习与发展指南》健康领域知识试题及答案
- 国家职业技能标准 (2021年版) 婴幼儿发展引导员
- 幼儿园小班科学:《小鸡和小鸭》 PPT课件
- 伯努利方程-ppt课件
评论
0/150
提交评论