版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省青州二中2024届高一数学第一学期期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,共60分)1.英国物理学家和数学家牛顿提出了物体在常温环境下温度变化的冷却模型,设物体的初始温度为,环境温度为,其中,经过后物体温度满足(其中k为正常数,与物体和空气的接触状况有关).现有一个的物体,放在的空气中冷却,后物体的温度是,则()(参考数据:)A.1.17 B.0.85C.0.65 D.0.232.已知函数(为自然对数的底数),若对任意,不等式都成立,则实数的取值范围是A. B.C. D.3.设函数,若,则A. B.C. D.4.若,则等于A. B.C. D.5.圆过点的切线方程是()A. B.C. D.6.如图,的斜二测直观图为等腰,其中,则原的面积为()A.2 B.4C. D.7.已知矩形,,,将矩形沿对角线折成大小为的二面角,则折叠后形成的四面体的外接球的表面积是A. B.C. D.与的大小有关8.命题“,有”的否定是()A.,使 B.,有C.,使 D.,使9.已知函数的值域为,则实数m的值为()A.2 B.3C.9 D.2710.函数的图象如图所示,则()A. B.C. D.11.已知函数是定义在R上的减函数,实数a,b,c满足,且,若是函数的一个零点,则下列结论中一定不正确的是()A. B.C. D.12.已知,则的值为()A B.1C. D.二、填空题(本大题共4小题,共20分)13.已知函数是偶函数,它在上是减函数,若满足,则的取值范围是___________.14.关于函数有下述四个结论:①是偶函数②在区间单调递增③的最大值为1④在有4个零点其中所有正确结论的编号是______.15.直线与直线平行,则实数的值为_______.16.已知,,则_________.三、解答题(本大题共6小题,共70分)17.抛掷两颗骰子,计算:(1)事件“两颗骰子点数相同”的概率;(2)事件“点数之和小于7”概率;(3)事件“点数之和等于或大于11”的概率.18.已知函数,.(1)求的最小正周期;(2)求在区间上的最大值和最小值.19.画出函数f(x)=|log3x|的图像,并求出其值域、单调区间以及在区间上的最大值.20.已知关于的函数.(1)若,求在上的值域;(2)存在唯一的实数,使得函数关于点对称,求的取值范围.21.已知函数.(1)用函数单调性的定义证明在区间上是增函数;(2)解不等式.22.已知函数(Ⅰ)求函数的单调递减区间;(Ⅱ)若函数的图象向右平移个单位长度后,所得的图象对应的函数为,且当,时,,求的值
参考答案一、选择题(本大题共12小题,共60分)1、D【解析】根据所给公式,将所给条件中的温度相应代入,利用对数的运算求解即可.【详解】根据题意:的物体,放在的空气中冷却,后物体的温度是,有:,所以,故,即,故选:D.2、C【解析】由题意结合函数的单调性和函数的奇偶性求解不等式即可.【详解】由函数的解析式可知函数为定义在R上的增函数,且函数为奇函数,故不等式即,据此有,即恒成立;当时满足题意,否则应有:,解得:,综上可得,实数的取值范围是.本题选择C选项.【点睛】对于求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f”,转化为解不等式(组)的问题.3、A【解析】由的函数性质,及对四个选项进行判断【详解】因为,所以函数为偶函数,且在区间上单调递增,在区间上单调递减,又因为,所以,即,故选择A【点睛】本题考查幂函数的单调性和奇偶性,要求熟记几种类型的幂函数性质4、B【解析】,.考点:三角恒等变形、诱导公式、二倍角公式、同角三角函数关系第II卷(非选择题5、D【解析】先求圆心与切点连线的斜率,再利用切线与连线垂直求得切线的斜率结合点斜式即可求方程.【详解】由题意知,圆:,圆心在圆上,,所以切线的斜率为,所以在点处的切线方程为,即.故选:D.6、D【解析】首先算出直观图面积,再根据平面图形与直观图面积比为求解即可.【详解】因为等腰是一平面图形的直观图,直角边,所以直角三角形的面积是.又因为平面图形与直观图面积比为,所以原平面图形的面积是.故选:D7、C【解析】由题意得,在二面角内的中点O到点A,B,C,D的距离相等,且为,所以点O即为外接球的球心,且球半径为,所以外接球的表面积为.选C8、D【解析】全称命题的否定:将任意改存在并否定原结论,即可知正确选项.【详解】由全称命题的否定为特称命题,∴原命题的否定为.故选:D9、C【解析】根据对数型复合函数的性质计算可得;【详解】解:因为函数的值域为,所以的最小值为,所以;故选:C10、C【解析】根据正弦型函数图象与性质,即可求解.【详解】由图可知:,所以,故,又,可求得,,由可得故选:C.11、B【解析】根据函数的单调性可得,再分和两种情况讨论,结合零点的存在性定理即可得出结论.【详解】解:∵是定义在R上的减函数,,∴,∵,∴或,,,当时,,;当,,时,;∴是不可能的.故选:B12、A【解析】知切求弦,利用商的关系,即可得解.【详解】,故选:A二、填空题(本大题共4小题,共20分)13、【解析】由偶函数的性质可得,再由函数在上是减函数,可得,从而可求出的取值范围【详解】因为函数是偶函数,所以可化为,因为函数在上是减函数,所以,所以或,解得或,所以的取值范围是,故答案为:14、①③【解析】利用奇偶性定义可判断①;时,可判断②;分、时求出可判断故③;时,由可判断④.【详解】因为,,所以①正确;当时,,当时,,,时,单调递减,故②错误;当时,,;当时,,综上的最大值为1,故③正确;时,由得,解得,由不存在零点,所以在有2个零点,故④错误.故答案为:①③.15、【解析】根据直线一般式,两直线平行则有,代入即可求解.【详解】由题意,直线与直线平行,则有故答案为:【点睛】本题考查直线一般式方程下的平行公式,属于基础题.16、【解析】利用两角差的正切公式可计算出的值.【详解】由两角差的正切公式得.故答案为:.【点睛】本题考查利用两角差的正切公式求值,解题的关键就是弄清角与角之间的关系,考查计算能力,属于基础题.三、解答题(本大题共6小题,共70分)17、(1);(2);(3)【解析】(1)根据所有的基本事件的个数为,而所得点数相同的情况有种,从而求得事件“两颗骰子点数相同”的概率;(2)根据所有的基本事件的个数,求所求的“点数之和小于”的基本事件的个数,最后利用概率计算公式求解即可;(3)根据所有的基本事件的个数,求所求的“点数之和等于或大于”的基本事件的个数,最后利用概率计算公式求解即可试题解析:抛掷两颗骰子,总的事件有个.(1)记“两颗骰子点数相同”为事件,则事件有6个基本事件,∴(2)记“点数之和小于7”事件,则事件有15个基本事件,∴(3)记“点数之和等于或大于11”为事件,则事件有3个基本事件,∴.考点:古典概型.18、(1)(2)最大值为,最小值为【解析】(1)利用二倍角公式和两角和正弦公式化简再由周期公式计算可得答案;(2)根据当的范围可得,再计算出可得答案.【小问1详解】,所以的最小正周期.【小问2详解】当时,,所以,所以,所以在区间上的最大值为和最小值.19、图象见解析,值域为[0,+∞),单调递增区间[1,+∞),单调递减区间是(0,1),最大值为2.【解析】由于f(x)=|log3x|=所以在[1,+∞)上f(x)图像与y=log3x的图像相同,在(0,1)上的图像与y=log3x的图像关于x轴对称,由此可画出函数的图像,再结合函数的图像可求出函数的值域和单调区间,及最值【详解】因为f(x)=|log3x|=所以在[1,+∞)上f(x)的图像与y=log3x的图像相同,在(0,1)上的图像与y=log3x的图像关于x轴对称,据此可画出其图像,如图所示.由图像可知,函数f(x)的值域为[0,+∞),单调递增区间是[1,+∞),单调递减区间是(0,1).当x∈时,f(x)在区间上是单调递减的,在(1,6]上是单调递增的.又f=2,f(6)=log36<2,故f(x)在区间上的最大值为2.【点睛】此题考查含绝对值对数型函数的图像和性质,考查数形结合的思想,属于基础题20、(1)(2)【解析】(1)由,得到,结合三角函数的性质,即可求解;(2)因为,可得,结合题意列出不等式,即可求解.【小问1详解】解:当,可得函数,因为,可得,则,所以在上值域为.【小问2详解】解:因为,可得,因为存在唯一的实数,使得曲线关于点对称,所以,解得,所以的取值范围即.21、(1)见解析;(2)【解析】(1)利用函数单调性的定义证明即可;(2)根据在区间上单调递增,得到,即可解出的集合.【详解】解:(1)设任意的且,则,且,,,即,即,即对任意的,当时,都有,在区间上增函数;(2)由(1)知:在区间上是增函数;又,,即,即,解得:,即的解集为:.【点睛】方法点睛:定义法判定函数在区间上的单调性的一般步骤:
取值:任取,,规定,
作差:计算,
定号:确定的正负,
得出结论:根据同增异减得出结论.22、(Ⅰ)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 快递加盟合作协议书模板
- 公务车辆维修服务合同样本
- 国际法买卖合同范本2024年
- 工程代建委托协议范本
- 2024工厂转让协议书样式
- 2024年版离婚协议书怎么写
- 拖拉机交易协议书
- 2024年标准离婚协议书参考范文
- 专利技术许可协议书
- 2024年装修合同保密协议模板范本
- 2024年陕煤集团榆林化学有限责任公司招聘笔试参考题库含答案解析
- 采购管理-采购新观念新技能新趋势
- 淋巴细胞与异型淋巴细胞
- 十大医药代表成功经验分享
- 《克服厌学情绪》课件
- 2024全新第五版FMEA培训教材
- 顶管施工安全警示与提醒
- 万千教育学前与儿童一起探索自然:幼儿园自然课程故事
- 小班美术教案:小兔家的新门帘教案及教学反思
- 人工智能在体育运动中的运用
- 残联交流经验发言模板
评论
0/150
提交评论