版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省微山县二中2024届高一上数学期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知函数,则的大致图像为()A. B.C. D.2.计算cos(-780°)的值是()A.- B.-C. D.3.已知函数,且,则A. B.C. D.4.下列关系中正确个数是()①②③④A.1 B.2C.3 D.45.下列说法正确的是()A.向量与共线,与共线,则与也共线B.任意两个相等的非零向量的始点与终点是一个平行四边形的四个顶点C.向量与不共线,则与都是非零向量D.有相同起点的两个非零向量不平行6.已知,,且,则的最小值为()A. B.C.2 D.17.设函数,若关于方程有个不同实根,则实数的取值范围为()A. B.C. D.8.函数y=的单调递减区间是()A.(-∞,1) B.[1,+∞)C.(-∞,-1) D.(-1,+∞)9.已知为钝角,且,则()A. B.C. D.10.如图,,下列等式中成立的是()A. B.C. D.11.已知在正四面体ABCD中,E是AD的中点,P是棱AC上的一动点,BP+PE的最小值为,则该四面体内切球的体积为()A.π B.πC.4π D.π12.设,,则下面关系中正确的是()A B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.若xlog23=1,则9x+3﹣x=_____14.函数一段图象如图所示,这个函数的解析式为______________.15.筒车亦称为“水转筒车”,一种以流水为动力,取水灌田的工具,筒车发明于隋而盛于唐,距今已有1000多年的历史.如图,假设在水流量稳定的情况下,一个半径为3米的筒车按逆时针方向做每6分钟转一圈的匀速圆周运动,筒车的轴心O距离水面BC的高度为1.5米,设筒车上的某个盛水筒P的切始位置为点D(水面与筒车右侧的交点),从此处开始计时,t分钟时,该盛水筒距水面距离为,则___________16.函数的单调递增区间为________________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.如图所示,在四棱锥中,底面是正方形,侧棱底面,,是的中点,过点作交于点.(1)证明:平面;(2)证明:平面;(3)求三棱锥的体积.18.已知函数且.(1)求函数的定义域;(2)判断的奇偶性并予以证明;(3)若0<a<1,解关于x的不等式.19.已知tanα<0,(1)若求的值;(2)若求tanα的值.20.已知,,且.(1)求的值;(2)求β.21.如图所示,一块形状为四棱柱的木料,分别为的中点.(1)要经过和将木料锯开,在木料上底面内应怎样画线?请说明理由;(2)若底面是边长为2菱形,,平面,且,求几何体的体积.22.已知为的三个内角,向量与向量共线,且角为锐角.(1)求角的大小;(2)求函数的值域.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】计算的值即可判断得解.【详解】解:由题得,所以排除选项A,D.,所以排除选项C.故选:B2、C【解析】直接利用诱导公式以及特殊角的三角函数求解即可【详解】cos(-780°)=cos780°=cos60°=故选C【点睛】本题考查余弦函数的应用,三角函数的化简求值,考查计算能力3、A【解析】,,,,.故选:A.4、A【解析】根据集合的概念、数集的表示判断【详解】是有理数,是实数,不是正整数,是无理数,当然不是整数.只有①正确故选:A【点睛】本题考查元素与集合的关系,掌握常用数集的表示是解题关键5、C【解析】根据共线向量(即平行向量)定义即可求解.【详解】解:对于A:可能是零向量,故选项A错误;对于B:两个向量可能在同一条直线上,故选项B错误;对于C:因为与任何向量都是共线向量,所以选项C正确;对于D:平行向量可能在同一条直线上,故选项D错误故选:C.6、A【解析】由已知条件得出,再将代数式与相乘,展开后利用基本不等式可求得的最小值.【详解】已知,且,,由基本不等式可得,当且仅当时,等号成立,因此,的最小值为.故选:A.【点睛】本题考查利用基本不等式求代数式的最值,考查的妙用,考查计算能力,属于基础题.7、B【解析】等价于,即或,转化为与和图象交点的个数为个,作出函数的图象,数形结合即可求解【详解】作出函数的图象如下图所示变形得,由此得或,方程只有两根所以方程有三个不同实根,则,故选:B【点睛】易错点点睛:本题的易错点为函数的图像无限接近直线,即方程只有两根,另外难点在于方程的变形,即因式分解8、A【解析】令t=-x2+2x﹣1,则y,故本题即求函数t的增区间,再结合二次函数的性质可得函数t的增区间【详解】令t=-x2+2x﹣1,则y,故本题即求函数t的增区间,由二次函数的性质可得函数t的增区间为(-∞,1),所以函数的单调递减区间为(-∞,1).故答案为A【点睛】本题主要考查指数函数和二次函数的单调性,考查复合函数的单调性,意在考查学生对这些知识的掌握水平和分析推理能力.9、C【解析】先求出,再利用和角的余弦公式计算求解.【详解】∵为钝角,且,∴,∴故选:C【点睛】本题主要考查同角的平方关系,考查和角的余弦公式的应用,意在考查学生对这些知识的理解掌握水平.10、B【解析】本题首先可结合向量减法的三角形法则对已知条件中的进行化简,化简为然后化简并代入即可得出答案【详解】因为,所以,所以,即,故选B【点睛】本题考查的知识点是平面向量的基本定理,考查向量减法的三角形法则,考查数形结合思想与化归思想,是简单题11、D【解析】首先设正四面体的棱长为,将侧面和沿边展开成平面图形,根据题意得到的最小值为,从而得到,根据等体积转化得到内切球半径,再计算其体积即可.【详解】设正四面体的棱长为,将侧面和沿边展开成平面图形,如图所示:则的最小值为,解得.如图所示:为正四面体的高,,正四面体高.所以正四面体的体积.设正四面体内切球的球心为,半径为,如图所示:则到正四面体四个面的距离相等,都等于,所以正四面体的体积,解得.所以内切球的体积.故选:D12、D【解析】根据元素与集合关系,集合与集合的关系判断即可得解.【详解】解:因为,,所以,.故选:D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】由已知条件可得x=log32,即3x=2,再结合分数指数幂的运算即可得解.【详解】解:∵,∴x=log32,则3x=2,∴9x=4,,∴,故答案为:【点睛】本题考查了指数与对数形式的互化,重点考查了分数指数幂的运算,属基础题.14、【解析】由图象的最大值求出A,由周期求出ω,通过图象经过(,0),求出φ,从而得到函数的解析式【详解】由函数的图象可得A=2,T==4π,∴解得ω=∵图象经过(,0),∴可得:φ=2kπ,k∈Z,解得:φ=2kπ,k∈Z,取k=0∴φ,故答案为:y=2sin(x)15、【解析】根据图象及所给条件确定振幅、周期、,再根据时求即可得解.【详解】由题意知,,,,当时,,,即,,所以,故答案为:16、【解析】函数由,复合而成,求出函数的定义域,根据复合函数的单调性即可得结果.【详解】函数由,复合而成,单调递减令,解得或,即函数的定义域为,由二次函数的性质知在是减函数,在上是增函数,由复合函数的单调性判断知函数的单调递增区间,故答案为.【点睛】本题考查用复合函数的单调性求单调区间,此题外层是一对数函数,故要先解出函数的定义域,在定义域上研究函数的单调区间,这是本题易失分点,切记!三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)见解析;(2)见解析;(3).【解析】(1)连接交于点,连接,利用中位线定理得出∥,故平面;(2)由⊥底面,得,结合得平面,于是,结合得平面,故而,结合,即可得出平面;;(3)依题意,可得试题解析:(1)连接交于点,连接∵底面是正方形,∴点是的中点又为的中点,∴∥又平面,平面,∴∥平面.(2)∵⊥底面,平面,∴∵底面是正方形,∴.又,平面,平面,∴平面.又平面,∴∵,是的中点,∴.又平面,平面,,∴平面.而平面∴.又,且,又平面,平面,∴平面.(Ⅲ)∵是的中点,.【点睛】本题考查了线面平行的判定,线面垂直的判定与性质,棱锥的体积计算.正确运用定理是证明的关键.18、(1)(2)奇函数.(3)【解析】(1)根据对数的真数应大于0,列出不等式组可得函数的定义域;(2)函数为奇函数,利用可得结论;(3)不等式等价于,利用对数函数的单调性得,解不等式即可.试题解析:(1)由题得,所以函数的定义域为;(2)函数为奇函数.证明:由(1)知函数的定义域关于原点对称,且,所以函数为奇函数;(3)由可得,即,又0<a<1,所以,故,即,解得,所以原不等式的解集为.点睛:本题主要考查了对数函数的定义域,函数奇偶性的证明,以及指数函数、对数函数的不等式解法,注重对基础的考查;要使对数函数有意义,需满足真数部分大于0,函数奇偶性的证明即判断和的关系,而对于指、对数类型的不等式主要是依据函数的单调性求解.19、(1);(2)或【解析】(1)利用同角三角函数的基本关系求得的值,可得的值,再利用诱导公式求得要求式子的值(2)利用同角三角函数的基本关系求得,由此求得的值【详解】(1),,为第四象限角,,,(2),,,或【点睛】本题主要考查同角三角函数的基本关系,诱导公式,属于基础题20、(1);.【解析】(1)先根据,且,求出,再求;(2)先根据,,求出,再根据求解即可.【详解】(1)因且,所以,所以.(2)因为,所以,又因为,所以,,所以.【点睛】三角函数求值有三类,(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角21、(1)见解析(2)3【解析】(1)根据面面平行的性质,两个平行平面,被第三个平面所截,截得的交线互相平行,故得到就是应画的线;(2)几何体是由三棱锥和四棱锥组成,分割成两个棱锥求体积即可解析:(1)连接,则就是应画的线;事实上,连接,在四棱柱中,因为分别为的中点,所以,,所以平行四边形,所以,又在四棱柱中,所以,所以点共面,又面,所以就是应画线.(2)几何体是由三棱锥和四棱锥组成.因为底面是边长为的菱形,,平面,连接,即为三棱锥的高,又,所以,连接,为四棱锥的高,又,所以,所以几何体的体积为.22、(1);(2).【解析】(1)根据平行向量的坐标关系即可得到(2﹣2sinA)(1+sinA)﹣(sinA+cosA)(sinA﹣cosA)=0,这样即可解出tan2A,结合A为锐角,即可求出A;(2)由B+C便得C,从而得到,利用二倍角的余弦公式及两角差的正余弦公式即可化简原函数y=1+sin(B),由前面知0,从而可得到B的范围,结合正弦函数的图象即可得到的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 乡村教育振兴路径研究-洞察分析
- 网箱施工质量控制研究-洞察分析
- 文本分类算法洞察分析-洞察分析
- 艺术版权保护策略-洞察分析
- 地埋电缆施工方法及技术要求措施
- 2024-2025学年浙江省A9协作体高二上学期11月期中物理试题(解析版)
- 音乐版权保护技术创新-第1篇-洞察分析
- 2023-2024年项目部安全管理人员安全培训考试题含答案解析
- 2023-2024年员工三级安全培训考试题【预热题】
- 2023年-2024年项目部安全管理人员安全培训考试题及完整答案【各地真题】
- 道路运输企业安全生产管理人员安全考核试题题库与答案
- 年终抖音运营述职报告
- 车间修缮合同模板
- 脑梗死患者的护理常规
- 2024年7月国家开放大学法律事务专科《法律咨询与调解》期末纸质考试试题及答案
- 护士条例解读
- 医务人员岗前培训课件
- 儿童文学解读导论智慧树知到期末考试答案章节答案2024年嘉兴大学
- 2023版押品考试题库必考点含答案
- 国际项目管理专业资质认证(ipmp)b级报告模板
- 计数培养基适用性检查记录表
评论
0/150
提交评论