必修2点线面关系知识的及A组题_第1页
必修2点线面关系知识的及A组题_第2页
必修2点线面关系知识的及A组题_第3页
必修2点线面关系知识的及A组题_第4页
必修2点线面关系知识的及A组题_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

空间点、直线、平面之间的位置关系知识点总结平面的根本性质与推论1平面含义:平面是无限延展的2三个公理:〔1〕公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.符号表示为LA·LA·αB∈L=>LαA∈αB∈αC·B·C·B·A·α〔2〕公理2:过不在一条直线上的三点,有且只有一个平面。符号表示为:A、B、C三点不共线=>有且只有一个平面α,使A∈α、B∈α、C∈α。公理2作用:确定一个平面的依据。〔3〕公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。P·P·αLβ公理3作用:判定两个平面是否相交的依据.空间中直线与直线之间的位置关系1空间的两条直线有如下三种关系:共面直线相交直线:同一平面内,有且只有一个公共点;共面直线平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点。2公理4:平行于同一条直线的两条直线互相平行。符号表示为:设a、b、c是三条直线=>a∥c=>a∥cc∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。公理4作用:判断空间两条直线平行的依据。3等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.4注意点:①a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为了简便,点O一般取在两直线中的一条上;②两条异面直线所成的角θ∈(0,);③当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;④两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:〔1〕直线在平面内——有无数个公共点〔2〕直线与平面相交——有且只有一个公共点〔3〕直线在平面平行——没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用aα来表示aαa∩α=Aa∥α.直线与平面平行的判定1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。简记为:线线平行,那么线面平行。符号表示:aαbβ=>a∥αa∥b平面与平面平行的判定1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,那么这两个平面平行。符号表示:aβbβa∩b=Pβ∥αa∥αb∥α2、判断两平面平行的方法有三种:〔1〕用定义;〔2〕判定定理;〔3〕垂直于同一条直线的两个平面平行。直线与平面、平面与平面平行的性质1、直线与平面平行的性质定理:一条直线与一个平面平行,那么过这条直线的任一平面与此平面的交线与该直线平行。简记为:线面平行那么线线平行。符号表示:a∥αaβa∥bα∩β=b作用:利用该定理可解决直线间的平行问题。2、两个平面平行的性质定理:如果两个平行的平面同时与第三个平面相交,那么它们的交线平行。符号表示:α∥βα∩γ=aa∥bβ∩γ=b作用:可以由平面与平面平行得出直线与直线平行2.3直线、平面垂直的判定及其性质直线与平面垂直的判定1、定义:如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。如图,直线与平面垂直时,它们唯一公共点P叫做垂足。PaL2、直线与平面垂直的判定定理:一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直。注意点:a)定理中的“两条相交直线”这一条件不可无视;b)定理表达了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。平面与平面垂直的判定1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形A梭lβBα2、二面角的记法:二面角α-l-β或α-AB-β3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,那么这两个平面垂直。直线与平面、平面与平面垂直的性质1、直线与平面垂直的性质定理:垂直于同一个平面的两条直线平行。2、两个平面垂直的性质定理:两个平面垂直,那么一个平面内垂直于交线的直线与另一平面垂直。转化思想面面平行线面平行线线平行面面垂直线面垂直线线垂直点、直线、平面之间的位置关系A组一、选择题1.设,为两个不同的平面,l,m为两条不同的直线,且l,m,有如下的两个命题:①假设∥,那么l∥m;②假设l⊥m,那么⊥.那么().A.①是真命题,②是假命题 B.①是假命题,②是真命题C.①②都是真命题 D.①②都是假命题(第2题)2.如图,ABCD-A1B1C1D1为正方体,下面结论(第2题)A.BD∥平面CB1D1B.AC1⊥BDC.AC1⊥平面CB1D1D.异面直线AD与CB1角为60°3.关于直线m,n与平面,,有以下四个命题:①m∥,n∥且∥,那么m∥n; ②m⊥,n⊥且⊥,那么m⊥n;③m⊥,n∥且∥,那么m⊥n; ④m∥,n⊥且⊥,那么m∥n.其中真命题的序号是().A.①② B.③④ C.①④ D.②③4.给出以下四个命题:①垂直于同一直线的两条直线互相平行②垂直于同一平面的两个平面互相平行③假设直线l1,l2与同一平面所成的角相等,那么l1,l2互相平行④假设直线l1,l2是异面直线,那么与l1,l2都相交的两条直线是异面直线其中假命题的个数是().A.1 B.2 C.3 D.5.以下命题中正确的个数是().①假设直线l上有无数个点不在平面内,那么l∥②假设直线l与平面平行,那么l与平面内的任意一条直线都平行③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行④假设直线l与平面平行,那么l与平面内的任意一条直线都没有公共点A.0个 B.1个 C.2个 D.3个6.两直线l1与l2异面,过l1作平面与l2平行,这样的平面().A.不存在 B.有唯一的一个 C.有无数个 D.只有两个7.把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点的三棱锥体积最大时,直线BD和平面ABC所成的角的大小为().A.90° B.60° C.45° D.30° 8.以下说法中不正确的选项是().A.空间中,一组对边平行且相等的四边形一定是平行四边形B.同一平面的两条垂线一定共面C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内D.过一条直线有且只有一个平面与平面垂直9.给出以下四个命题:①如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面③如果两条直线都平行于一个平面,那么这两条直线互相平行④如果一个平面经过另一个平面的一条垂线,那么些两个平面互相垂直其中真命题的个数是().A.4B.3 C.2 D.110.异面直线a,b所成的角60°,直线a⊥c,那么直线b与c所成的角的范围为().A.[30°,90°]B.[60°,90°] C.[30°,60°] D.[30°,120°]二、填空题11.三棱锥P-ABC的三条侧棱PA,PB,PC两两相互垂直,且三个侧面的面积分别为S1,S2,S3,那么这个三棱锥的体积为.12.P是△ABC所在平面外一点,过P作PO⊥平面,垂足是O,连PA,PB,PC.(1)假设PA=PB=PC,那么O为△ABC的心;(2)PA⊥PB,PA⊥PC,PC⊥PB,那么O是△ABC的心;(3)假设点P到三边AB,BC,CA的距离相等,那么O是△ABC的心;(4)假设PA=PB=PC,∠C=90º,那么O是AB边的点;J(第13题)(5)假设PA=PB=PC,AB=AC,那么点O在△ABCJ(第13题)13.如图,在正三角形ABC中,D,E,F分别为各边的中点,G,H,I,J分别为AF,AD,BE,DE的中点,将△ABC沿DE,EF,DF折成三棱锥以后,GH与IJ所成角的度数为.14.直线l与平面所成角为30°,l∩=A,直线m∈,那么m与l所成角的取值范围是.15.棱长为1的正四面体内有一点P,由点P向各面引垂线,垂线段长度分别为d1,d2,d3,d4,那么d1+d2+d3+d4的值为.16.直二面角-l-的棱上有一点A,在平面,内各有一条射线AB,AC与l成45°,AB,AC,那么∠BAC=.三、解答题17.在四面体ABCD中,△ABC与△DBC都是边长为4的正三角形.(1)求证:BC⊥AD;(第17题)(2)假设点D到平面ABC的距离等于3,求二面角A-(第17题)(3)设二面角A-BC-D的大小为,猜测为何值时,四面体A-BCD的体积最大.(不要求证明)18.如图,在长方体ABCD—A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点,连结ED,EC,EB和DB(1)求证:平面EDB⊥平面EBC;(2)求二面角E-DB-C的正切值.19*.如图,在底面是直角梯形的四棱锥S-ABCD中,AD∥BC,∠ABC=90°,SA⊥面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论