版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课时跟踪检测(二十四)解三角形的综合应用一抓基础,多练小题做到眼疾手快1.如图,两座灯塔A和B与海岸观察站C的距离相等,灯塔A在观察站南偏西40°,灯塔B在观察站南偏东60°,则灯塔A在灯塔B的________方向上.解析:由条件及图可知,∠A=∠B=40°,又∠BCD=60°,所以∠CBD=30°,所以∠DBA=10°,因此灯塔A在灯塔B南偏西80°.答案:南偏西80°2.(2019·扬州调研)如图,勘探队员朝一座山行进,在前后A,B两处观察山顶C的仰角分别是30°和45°,两个观察点A,B之间的距离是100m,则此山CD的高度为________m.解析:设山高CD为x,在Rt△BCD中有:BD=CD=x,在Rt△ACD中有:AC=2x,AD=eq\r(3)x.而AB=AD-BD=(eq\r(3)-1)x=100.解得x=eq\f(100,\r(3)-1)=50(eq\r(3)+1).答案:50(eq\r(3)+1)3.(2019·南通模拟)2018年12月,为捍卫国家主权,我国海军在南海海域进行例行巡逻,其中一艘巡逻舰从海岛A出发,沿南偏东70°的方向航行40海里后到达海岛B,然后再从海岛B出发,沿北偏东35°的方向航行40eq\r(2)海里后到达海岛C.如果巡逻舰直接从海岛A出发到海岛C,则航行的路程为________海里.解析:根据题意画出图形,如图所示.在△ABC中,∠ABC=70°+35°=105°,AB=40,BC=40eq\r(2).根据余弦定理,得AC2=AB2+BC2-2AB·BC·cos∠ABC=402+(40eq\r(2))2-2×40×40eq\r(2)×eq\f(\r(2)-\r(6),4)=400(8+4eq\r(3))=400(eq\r(6)+eq\r(2))2,∴AC=20(eq\r(6)+eq\r(2)).故所求航行的路程为20(eq\r(6)+eq\r(2))海里.答案:20(eq\r(6)+eq\r(2))4.已知A船在灯塔C北偏东80°处,且A到C的距离为2km,B船在灯塔C北偏西40°,A,B两船的距离为3km,则B到C的距离为________km.解析:由条件知,∠ACB=80°+40°=120°,设BC=xkm则由余弦定理知9=x2+4-4xcos120°,因为x>0,所以x=eq\r(6)-1.答案:eq\r(6)-15.某同学骑电动车以24km/h的速度沿正北方向的公路行驶,在点A处测得电视塔S在电动车的北偏东30°方向上,15min后到点B处,测得电视塔S在电动车的北偏东75°方向上,则点B与电视塔的距离是________km.解析:如题图,由题意知AB=24×eq\f(15,60)=6,在△ABS中,∠BAS=30°,AB=6,∠ABS=180°-75°=105°,所以∠ASB=45°,由正弦定理知eq\f(BS,sin30°)=eq\f(AB,sin45°),所以BS=eq\f(AB·sin30°,sin45°)=3eq\r(2)(km).答案:3eq\r(2)6.(2018·天一中学检测)线段AB外有一点C,∠ABC=60°,AB=200km,汽车以80km/h的速度由A向B行驶,同时摩托车以50km/h的速度由B向C行驶,则运动开始________h后,两车的距离最小.解析:如图所示,设过xh后两车距离为y,则BD=200-80x,BE=50x,所以y2=(200-80x)2+(50x)2-2×(200-80x)·50x·cos60°整理得y2=12900x2-42000x+40000(0≤x≤2.5),所以当x=eq\f(70,43)时y2最小.答案:eq\f(70,43)二保高考,全练题型做到高考达标1.一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是________海里.解析:如图所示,易知,在△ABC中,AB=20海里,∠CAB=30°,∠ACB=45°,根据正弦定理得eq\f(BC,sin30°)=eq\f(AB,sin45°),解得BC=10eq\r(2)(海里).答案:10eq\r(2)2.如图,一条河的两岸平行,河的宽度d=0.6km,一艘客船从码头A出发匀速驶往河对岸的码头B.已知AB=1km,水的流速为2km/h,若客船从码头A驶到码头B所用的最短时间为6min,则客船在静水中的速度为________km/h.解析:设AB与河岸线所成的角为θ,客船在静水中的速度为vkm/h,由题意知,sinθ=eq\f(0.6,1)=eq\f(3,5),从而cosθ=eq\f(4,5),所以由余弦定理得eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,10)v))2=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,10)×2))2+12-2×eq\f(1,10)×2×1×eq\f(4,5),解得v=6eq\r(2).答案:6eq\r(2)3.(2018·启东二模)如图所示,为了测量A,B两处岛屿的距离,小明在D处观测,A,B分别在D处的北偏西15°、北偏东45°方向,再往正东方向行驶40海里至C处,观测B在C处的正北方向,A在C处的北偏西60°方向,则A,B两处岛屿的距离为________海里.解析:由题意可知CD=40,∠ADB=60°,∠ACB=60°,∠BCD=90°,∴∠ACD=30°,∠ADC=105°,∴∠CAD=45°.在△ACD中,由正弦定理,得eq\f(AD,sin30°)=eq\f(40,sin45°),∴AD=20eq\r(2),在Rt△BCD中,∵∠BDC=45°,∴BD=eq\r(2)CD=40eq\r(2).在△ABD中,由余弦定理,得AB=eq\r(800+3200-2×20\r(2)×40\r(2)×cos60°)=20eq\r(6).故A,B两处岛屿的距离为20eq\r(6)海里.答案:20eq\r(6)4.一个大型喷水池的中央有一个强大喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A测得水柱顶端的仰角为45°,沿点A向北偏东30°前进100m到达点B,在B点测得水柱顶端的仰角为30°,则水柱的高度是________m.解析:设水柱高度是hm,水柱底端为C,则在△ABC中,A=60°,AC=h,AB=100,BC=eq\r(3)h,根据余弦定理得,(eq\r(3)h)2=h2+1002-2·h·100·cos60°,即h2+50h-5000=0,即(h-50)(h+100)=0,即h=50,故水柱的高度是50m.答案:505.(2018·镇江模拟)在不等边三角形ABC中,角A,B,C所对的边分别为a,b,c,其中a为最大边,如果sin2(B+C)<sin2B+sin2C,则角A的取值范围为________.解析:由题意得sin2A<sin2B+sin2C,再由正弦定理得a2<b2+c2,即b2+c2-a2>0.则cosA=eq\f(b2+c2-a2,2bc)>0,因为0<A<π,所以0<A<eq\f(π,2).又a为最大边,所以A>eq\f(π,3).因此角A的取值范围是eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,3),\f(π,2))).答案:eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,3),\f(π,2)))6.(2019·通州中学高三测试)甲船在湖中B岛的正南A处,AB=3km,甲船以8km/h的速度向正北方向航行,同时乙船自B岛出发,以12km/h的速度向北偏东60°方向驶去,则行驶15min时,两船间的距离是________km.解析:画出示意图如图所示,设行驶15min时,甲船到达M点,乙船到达N点,由题意知AM=8×eq\f(1,4)=2(km),BN=12×eq\f(1,4)=3(km),MB=AB-AM=3-2=1(km),由余弦定理得MN2=MB2+BN2-2MB·BNcos120°=1+9-2×1×3×eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,2)))=13,所以MN=eq\r(13)(km).答案:eq\r(13)7.(2018·南京模拟)校运动会开幕式上举行升旗仪式,旗杆正好处在坡度为15°的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为10eq\r(6)m(如图所示),旗杆底部与第一排在一个水平面上.若国歌时长为50s,升旗手应以________m/s的速度匀速升旗.解析:依题意可知∠AEC=45°,∠ACE=180°-60°-15°=105°,所以∠EAC=180°-45°-105°=30°.由正弦定理可知eq\f(CE,sin∠EAC)=eq\f(AC,sin∠CEA),所以AC=eq\f(CE,sin∠EAC)·sin∠CEA=20eq\r(3)m.所以在Rt△ABC中,AB=AC·sin∠ACB=20eq\r(3)×eq\f(\r(3),2)=30m.因为国歌时长为50s,所以升旗速度为eq\f(30,50)=0.6m/s.答案:0.68.如图所示,在坡度一定的山坡A处测得山顶上一建筑物CD的顶端C对于山坡的斜度为15°,沿山坡向山顶前进100m到达B处,又测得C对于山坡的斜度为45°,若CD=50m,山坡的坡角为θ,则cosθ=________.解析:在△ABC中,由正弦定理可知BC=eq\f(ABsin∠BAC,sin∠ACB)=eq\f(100sin15°,sin45°-15°)=50(eq\r(6)-eq\r(2))(m).在△BCD中,由正弦定理可知sin∠BDC=eq\f(BCsin∠CBD,CD)=eq\f(50\r(6)-\r(2)sin45°,50)=eq\r(3)-1.由题图知cosθ=sin∠ADE=sin∠BDC=eq\r(3)-1.答案:eq\r(3)-19.(2018·镇江期末)如图,某公园有三条观光大道AB,BC,AC围成直角三角形,其中直角边BC=200m,斜边AB=400m.现有甲、乙、丙三位小朋友分别在AB,BC,AC大道上嬉戏,所在位置分别记为点D,E,F.(1)若甲、乙都以每分钟100m的速度从点B出发在各自的大道上奔走,到大道的另一端时即停,乙比甲迟2分钟出发,当乙出发1分钟后,求此时甲、乙两人之间的距离;(2)设∠CEF=θ,乙、丙之间的距离是甲、乙之间距离的2倍,且∠DEF=eq\f(π,3),请将甲、乙之间的距离y表示为θ的函数,并求甲、乙之间的最小距离.解:(1)依题意得BD=300,BE=100.在△ABC中,cosB=eq\f(BC,AB)=eq\f(1,2),所以B=eq\f(π,3).在△BDE中,由余弦定理得DE2=BD2+BE2-2BD·BE·cosB=3002+1002-2×300×100×eq\f(1,2)=70000,所以DE=100eq\r(7).答:甲、乙两人之间的距离为100eq\r(7)m.(2)由题意得EF=2DE=2y,∠BDE=∠CEF=θ.在Rt△CEF中,CE=EF·cos∠CEF=2ycosθ.在△BDE中,由正弦定理得eq\f(BE,sin∠BDE)=eq\f(DE,sin∠DBE),即eq\f(200-2ycosθ,sinθ)=eq\f(y,sin60°),所以y=eq\f(100\r(3),\r(3)cosθ+sinθ)=eq\f(50\r(3),sin\b\lc\(\rc\)(\a\vs4\al\co1(θ+\f(π,3)))),0<θ<eq\f(π,2),所以当θ=eq\f(π,6)时,y有最小值50eq\r(3).答:甲、乙之间的最小距离为50eq\r(3)m.10.(2019·淮安模拟)如图,某军舰艇位于岛A的正西方C处,且与岛A相距12海里.经过侦察发现,国际海盗船以10海里/小时的速度从岛A出发沿北偏东30°方向逃窜,同时,该军舰艇从C处出发沿北偏东90°-α的方向匀速追赶国际海盗船,恰好用2小时在B处追上.(1)求该军舰艇的速度;(2)求sinα的值.解:(1)依题意知,∠CAB=120°,AB=10×2=20,AC=12,∠ACB=α,在△ABC中,由余弦定理,得BC2=AB2+AC2-2AB·ACcos∠CAB=202+122-2×20×12cos120°=784,解得BC=28,所以该军舰艇的速度为eq\f(BC,2)=14海里/小时.(2)在△ABC中,由正弦定理,得eq\f(AB,sinα)=eq\f(BC,sin120°),即sinα=eq\f(ABsin120°,BC)=eq\f(20×\f(\r(3),2),28)=eq\f(5\r(3),14).三上台阶,自主选做志在冲刺名校1.如图,航空测量组的飞机航线和山顶在同一铅直平面内,已知飞机的飞行高度为10000m,速度为50m/s.某一时刻飞机看山顶的俯角为15°,经过420s后看山顶的俯角为45°,则山顶的海拔高度为________m.(取eq\r(2)=1.4,eq\r(3)=1.7)解析:如图,作CD垂直于AB的延长线于点D,由题意知∠A=15°,∠DBC=45°,所以∠ACB=30°,AB=50×420=21000(m).又在△ABC中,eq\f(BC,sinA)=eq\f(AB,sin∠ACB),所以BC=eq\f(21000,\f(1,2))×sin15°=10500(eq\r(6)-eq\r(2)).因为CD⊥AD,所以CD=BC·sin∠DBC=10500(eq\r(6)-eq\r(2))×eq\f(\r(2),2)=10500(eq\r(3)-1)=7350.故山顶的海拔高度h=10000-7350=2650(m).答案:26502.(2019·南京调研)某市有一中心公园,平面图如图所示,公园的两条观光路为l1,l2,公园管理中心位于点O正南方2kml1上的A处,现计划在l2即点O北偏东45°方向,观光路l2路旁B处修建一公园服务中心.(1)若为方便管理,使AB两点之间的直线距离不大于2eq\r(5)km,求OB长度的取值范围;(2)为了方便市民活动,拟在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版高新技术企业研发项目采购合同2篇
- 二零二五年度高校与公益组织合作办学合同3篇
- 二零二五版家庭健康养生及食疗服务合同3篇
- 二零二五年度生态鸡养殖基地购销合同标准版3篇
- 二零二五版桉树生物质能源开发合同2篇
- 二零二五年房地产销售代理合同中止及终止协议6篇
- 二零二五版智能仓储货物承包运输一体化合同3篇
- 二零二五年智能空调销售及绿色环保安装合同样本3篇
- 二零二五年度车库产权买卖及物业服务合同范本3篇
- 二零二五年文化艺术品油漆保护修复合同3篇
- 春节文化常识单选题100道及答案
- 24年追觅在线测评28题及答案
- TGDNAS 043-2024 成人静脉中等长度导管置管技术
- 《陆上风电场工程概算定额》NBT 31010-2019
- FZ∕T 63006-2019 松紧带
- 罐区自动化系统总体方案(31页)ppt课件
- BIQS评分表模板
- 工程建设项目内外关系协调措施
- 招投标法考试试题及答案
- 皮带输送机工程施工电气安装措施要点
- 药房(冰柜)温湿度表
评论
0/150
提交评论