![辽宁省海城市第六中学2024届数学八下期末达标检测试题含解析_第1页](http://file4.renrendoc.com/view11/M00/1B/3E/wKhkGWXctmqAP3Z0AAHYLFjnR7Q857.jpg)
![辽宁省海城市第六中学2024届数学八下期末达标检测试题含解析_第2页](http://file4.renrendoc.com/view11/M00/1B/3E/wKhkGWXctmqAP3Z0AAHYLFjnR7Q8572.jpg)
![辽宁省海城市第六中学2024届数学八下期末达标检测试题含解析_第3页](http://file4.renrendoc.com/view11/M00/1B/3E/wKhkGWXctmqAP3Z0AAHYLFjnR7Q8573.jpg)
![辽宁省海城市第六中学2024届数学八下期末达标检测试题含解析_第4页](http://file4.renrendoc.com/view11/M00/1B/3E/wKhkGWXctmqAP3Z0AAHYLFjnR7Q8574.jpg)
![辽宁省海城市第六中学2024届数学八下期末达标检测试题含解析_第5页](http://file4.renrendoc.com/view11/M00/1B/3E/wKhkGWXctmqAP3Z0AAHYLFjnR7Q8575.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省海城市第六中学2024届数学八下期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.将一副直角三角板如图放置,点C在FD的延长上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=12,则CD的长为()A.4 B.12﹣4 C.12﹣6 D.62.用配方法解方程,变形后的结果正确的是()A. B. C. D.3.如图,将边长为8㎝的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长是()A.3cm B.4cm C.5cm D.6cm4.下列各组数据中,不是勾股数的是()A.3,4,5 B.5,7,9 C.8,15,17 D.7,24,255.下列四个选项中,关于一次函数y=x-2的图象或性质说法错误的是A.y随x的增大而增大 B.经过第一,三,四象限C.与x轴交于-2,0 D.与y轴交于0,-26.已知一次函数与的图象如图,则下列结论:①;②;③关于的方程的解为;④当时,,其中正确的个数是A.1 B.2 C.3 D.47.定义,当时,,当<时,;已知函数,则该函数的最大值是()A. B. C. D.8.如图,△AOB中,∠B=25°,将△AOB绕点O顺时针旋转60°,得到△A′OB′,边A′B′与边OB交于点C(A′不在OB上),则∠A′CO的度数为()A.85° B.75° C.95° D.105°9.小华用火柴棒摆直角三角形,已知他摆两条直角边分别用了6根和8根火柴棒,则他摆完这个直角三角形共用火柴棒()A.25根 B.24根 C.23根 D.22根10.如图,是我国古代数学家在为《周髀算经》作注解时给出的“弦图”,给出“弦图”的这位数学家是()A.毕达哥拉斯 B.祖冲之 C.华罗庚 D.赵爽二、填空题(每小题3分,共24分)11.如图,点A在线段BG上,四边形ABCD和四边形DEFG都是正方形,面积分别是10和19,则△CDE的面积为_____________.12.平面直角坐标系中,将直线l:y=2x-1沿y轴向下平移b个单位长度后后得到直线l′,点A(m,n)是直线l′上一点,且2m-n=3,则b=_______.13.已知y+2和x成正比例,当x=2时,y=4,则y与x的函数关系式是______________.14.如果将一次函数的图像沿轴向上平移3个单位,那么平移后所得图像的函数解析式为__________.15.已知一个反比例函数的图象与正比例函数的图象有交点,请写出一个满足上述条件的反比例函数的表达式:__________________.16.将直线y=2x-3平移,使之经过点(1,4),则平移后的直线是____.17.将直线向上平移4个单位后,所得的直线在平面直角坐标系中,不经过第_________象限.18.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=__________度.三、解答题(共66分)19.(10分)已知:如图,四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积?20.(6分)甲、乙两名同学进入八年级后,某科6次考试成绩如图所示:(1)请根据统计图填写下表:平均数方差中位数众数甲7575乙33.372.5(2)请你分别从以下两个不同的方面对甲、乙两名同学6次考试成绩进行分析,你认为反映出什么问题?①从平均数和方差相结合分析;②从折线图上两名同学分数的走势上分析.21.(6分)某学校抽查了某班级某月5天的用电量,数据如下表(单位:度):度数
9
10
11
天数
3
1
1
(1)求这5天的用电量的平均数;(2)求这5天用电量的众数、中位数;(3)学校共有36个班级,若该月按22天计,试估计该校该月的总用电量.22.(8分)如图,在平行四边形ABCD中,点E,F分别是AB,CD的中点.(1)求证:四边形AEFD是平行四边形;(2)若∠DAB=120°,AB=12,AD=6,求△ABC的面积.23.(8分)如图所示,在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在格点(网格线的交点)上.(1)将△ABC绕点B逆时针旋转90°,得到△A1(2)以点A为位似中心放大△ABC,得到△AB2C2,使放大前后的三角形面积之比为24.(8分)如图,在△ABC中,∠C=90°,D为边BC上一点,E为边AB的中点,过点A作AF∥BC,交DE的延长线于点F,连结BF.(1)求证:四边形ADBF是平行四边形;(2)当D为边BC的中点,且BC=2AC时,求证:四边形ACDF为正方形.25.(10分)在西安市争创全国教育强市的宏伟目标指引下,高新一中初中新校区在今年如期建成.在校园建设过程中,规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%,求广场中间小路的宽.26.(10分)如图,在▱ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.求证:(1)△BEG≌△DFH;(2)四边形GEHF是平行四边形.
参考答案一、选择题(每小题3分,共30分)1、B【解题分析】
过点B作BM⊥FD于点M,根据题意可求出BC的长度,然后在△EFD中可求出∠EDF=60°,进而可得出答案.【题目详解】解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=45°,AC=12,∴BC=AC=12.∵AB∥CF,∴BM=BC×sin45°=CM=BM=12,在△EFD中,∠F=90°,∠E=30°,∴∠EDF=60°,∴MD=BM÷tan60°=,∴CD=CM﹣MD=12﹣.故选B.【题目点拨】本题考查了解直角三角形,难度较大,解答此类题目的关键根据题意建立直角三角形利用所学的三角函数的关系进行解答.2、A【解题分析】
方程移项后,配方得到结果,即可作出判断.【题目详解】解:方程移项得:x2-8x=-9,配方得:x2-8x+16=7,即(x-4)2=7,故选:A.【题目点拨】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.3、A【解题分析】分析:根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8﹣x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长.详解:设CN=xcm,则DN=(8﹣x)cm,由折叠的性质知EN=DN=(8﹣x)cm,而EC=BC=4cm,在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,即(8﹣x)2=16+x2,整理得16x=48,所以x=1.故选:A.点睛:此题主要考查了折叠问题,明确折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题.4、B【解题分析】
欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【题目详解】、,能构成直角三角形,是整数,故选项错误;、,不能构成直角三角形,故选项正确;、,构成直角三角形,是正整数,故选项错误;、,能构成直角三角形,是整数,故选项错误.故选:.【题目点拨】此题主要考查了勾股数的定义,熟记勾股数的定义是解题的关键.5、C【解题分析】
根据一次函数的图象和性质,判断各个选项中的说法是否正确即可.【题目详解】解:∵y=x−2,k=1,∴该函数y随x的增大而增大,故选项A正确,该函数图象经过第一、三、四象限,故选项B正确,与x轴的交点为(2,0),故选项C错误,与y轴的交点为(0,−2),故选项D正确,故选:C.【题目点拨】本题考查一次函数的图象和性质,解答本题的关键是明确题意,利用一次函数的性质解答.6、C【解题分析】
根据一次函数的性质对①②进行判断;利用一次函数与一元一次方程的关系对③进行判断;利用函数图象,当x≥2时,一次函数y1=x+a在直线y2=kx+b的上方,则可对④进行判断.【题目详解】一次函数经过第一、二、四象限,,,所以①正确;直线的图象与轴交于负半轴,,,所以②错误;一次函数与的图象的交点的横坐标为2,时,,所以③正确;当时,,所以④正确.故选.【题目点拨】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了一次函数与一元一次方程,一次函数的性质.7、B【解题分析】
根据直线y=x-3和直线y=2x+3,知它们的交点的坐标为(-6,-1),再根据新定义讨论:x≤-6,y=2x+3,利用一次函数的性质得到y有最大值-1;x>-6时,y=x-3,则x=-6时,利用一次函数的性质得到y有最大值-1;【题目详解】解:当x-3≥2x+3,解得x≤-6时,y=min(x-3,2x+3)=2x+3,则x=-6时,y有最大值-1;
当x-3<2x+3,解得x>-6时,y=min(x-3,2x+3)=x-3,则x=-6时,y有最大值-1;
所以该函数的最大值是-1.
故选:B.【题目点拨】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.8、A【解题分析】
解:∵△AOB绕点O顺时针旋转60°,得到△A′OB′,∴∠B′=25°,∠BOB′=60°,∵∠A′CO=∠B′+∠BOB′,∴∠A′CO=25°+60°=85°,故选A.9、B【解题分析】
根据勾股定理即可求得斜边需要的火柴棒的数量.再由三角形的周长公式来求摆完这个直角三角形共用火柴棒的数量【题目详解】∵两直角边分别用了6根、8根长度相同的火柴棒∴由勾股定理,得到斜边需用:(根),∴他摆完这个直角三角形共用火柴棒是:6+8+10=24(根).故选B.【题目点拨】本题考查勾股定理的应用,是基础知识比较简单.10、D【解题分析】
我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.【题目详解】解:我国三国时期数学家赵爽在为《周髀算经》作注解时创造了一幅“弦图”,后人称其为“赵爽弦图”,“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.故答案是:D.【题目点拨】本题考查了学生对我国数学史的了解,籍此培养学生的爱国情怀和民族自豪感,增强学习数学的兴趣.二、填空题(每小题3分,共24分)11、【解题分析】
根据三角形的面积公式,已知边CD的长,求出CD边上的高即可.过E作EH⊥CD,易证△ADG与△HDE全等,求得EH,进而求△CDE的面积.【题目详解】过E作EH⊥CD于点H.∵∠ADG+∠GDH=∠EDH+∠GDH,∴∠ADG=∠EDH.又∵DG=DE,∠DAG=∠DHE.∴△ADG≌△HDE.∴HE=AG.∵四边形ABCD和四边形DEFG都是正方形,面积分别是5和1.即AD2=5,DG2=1.∴在直角△ADG中,AG=,∴EH=AG=2.∴△CDE的面积为CD·EH=××2=.故答案为.【题目点拨】考查了勾股定理、全等三角形的判定与性质、正方形的性质,正确作出辅助线,构造全等三角形是解决本题的关键.12、2【解题分析】
先写出直线l′的解析式为y=2x-1-b,代入点A的坐标得到n=2m-1-b,因为2m-n=3,即可解答出b的值.【题目详解】∵直线l′为y=2x-1沿y轴向下平移b个单位长度,∴直线l′:y=2x-1-b,∵点A(m,n)是直线l′上一点,∴n=2m-1-b又∵且2m-n=3,解得b=2.故答案为:2.【题目点拨】此题考查一次函数,解题关键在于一次函数图象的平移.13、y=3x-1【解题分析】解:设函数解析式为y+1=kx,∴1k=4+1,解得:k=3,∴y+1=3x,即y=3x-1.14、【解题分析】
根据一次函数图象的平移规律:上加下减,左加右减进行平移即可得出答案.【题目详解】将一次函数的图像沿轴向上平移3个单位,那么平移后所得图像的函数解析式为,即,故答案为:.【题目点拨】本题主要考查一次函数图象的平移,掌握一次函数图象的平移规律是解题的关键.15、【解题分析】
写一个经过一、三象限的反比例函数即可.【题目详解】反比例函数与有交点.故答案为:.【题目点拨】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.16、y=2x+2【解题分析】【分析】先由平移推出x的系数是2,可设直线解析式是y=2x+k,把点(1,4)代入可得.【题目详解】由已知可设直线解析式是y=2x+k,因为,直线经过点(1,4),所以,4=2+k所以,k=2所以,y=2x+2故答案为y=2x+2【题目点拨】本题考核知识点:一次函数性质.解题关键点:熟记一次函数性质.17、四【解题分析】
根据一次函数图象的平移规律,可得答案.【题目详解】解:由题意得:平移后的解析式为:,即,直线经过一、二、三象限,不经过第四象限,故答案为:四.【题目点拨】本题考查了一次函数图象与几何变换,利用一次函数图象的平移规律是解题关键,注意求直线平移后的解析式时要注意平移时的值不变.18、22.5°【解题分析】
四边形ABCD是矩形,AC=BD,OA=OC,OB=OD,OA=OB═OC,∠OAD=∠ODA,∠OAB=∠OBA,∠AOE=∠OAD+∠ODA=2∠OAD,∠EAC=2∠CAD,∠EAO=∠AOE,AE⊥BD,∠AEO=90°,∠AOE=45°,∠OAB=∠OBA=67.5°,即∠BAE=∠OAB﹣∠OAE=22.5°.考点:矩形的性质;等腰三角形的性质.三、解答题(共66分)19、36【解题分析】
连接AC,根据勾股定理可求AC,再利用勾股定理逆定理可判定△ACD为直接三角形,进而可求答案.【题目详解】解:连结AC,在Rt△ABC中∵在△ADC中∵,∴∴△ADC是直角三角形,∠ACD=90°【题目点拨】本题考查的是勾股定理和勾股定理的逆定理,能够灵活运用所学知识是解题的关键.20、(1)125,75,75,70;(2)①见解析;②见解析.【解题分析】
(1)根据平均数、方差、中位数、众数的概念以及求解方法分别进行求解即可得;(2)①根据平均数以及方差的大小关系进行比较分析即可;②根据折线图的走势进行分析即可.【题目详解】(1)甲方差:,甲的中位数:75,乙的平均数:,乙的众数为70,故答案为:125,75,75,70;(2)①从平均数看,甲同学的成绩比乙同学稍好,但是从方差看,乙同学的方差小,乙同学成绩稳定,综合平均数和方差分析,乙同学总体成绩比甲同学好;②从折线图上两名同学分数的走势,甲同学的成绩在稳步直线上升,属于进步计较快,乙同学的成绩有较大幅度波动,不算稳定.【题目点拨】本题考查了折线统计图,正确理解方差、中位数、平均数、众数的含义是解题的关键.21、(1)1.6度;(2)1度;1度;(3)2.2度.【解题分析】
(1)用加权平均数的计算方法计算平均用电量即可;(2)分别利用众数、中位数及极差的定义求解即可;(3)用班级数乘以日平均用电量乘以天数即可求得总用电量.【题目详解】(1)平均用电量为:(1×3+10×1+11×1)÷5=1.6度;(2)1度出现了3次,最多,故众数为1度;第3天的用电量是1度,故中位数为1度;(3)总用电量为22×1.6×36=2.2度.22、(1)见解析;(2)S△ABC=18.【解题分析】
(1)易知AE=AB,DF=CD,即可得到AE=DF,又有AB∥CD,所以四边形AEFD是平行四边形;(2)作CH⊥AB于H.利用平行四边形性质求出∠B,再利用三角函数求出CH,接着利用三角形面积公式求解即可【题目详解】(1)证明:如图.∵四边形ABCD是平行四边形,∴AB∥CD且AB=CD,∵点E,F分别是AB,CD的中点,∴AE=AB,DF=CD.∴AE=DF,∴四边形AEFD是平行四边形;(2)如图,作CH⊥AB于H.∵四边形ABCD是平行四边形,∴AD=BC=6,AD∥BC,∴∠B=180°﹣∠DAB=60°,∴CH=BC•sin60°=3,∴S△ABC=•AB•CH=×12×3=18【题目点拨】本题主要考查平行四边形的证明与性质,三角函数的简单应用,三角形面积计算等知识点,本题第二问关键在于能够做出辅助线同时利用三角函数求出高23、(1)见解析;(2)见解析【解题分析】
(1)分别作出点A、C绕点B逆时针旋转90°所得对应点,再顺次连接即可得;
(2)分别作出点B、C变换后的对应点,再顺次连接即可得.【题目详解】(1)如图所示,△A1BC1即为所求.
(2)如图所示,△AB2C2即为所求.【题目点拨】考查作图-旋转变换、位似变换,解题的关键是掌握旋转变换和位似变换的定义与性质.24、(1)见解析;(2)见解析.【解题分析】
(1)根据平行线的性质得到∠AFE=∠BDE,根据全等三角形的性质得到AF=BD,于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度办事处知识产权专利实施许可与授权合同
- 家装项目监管合同
- 二零二五年度办公室清洁与员工健康关怀合同
- 农产品销售居间合同委托书
- 有保证人借款合同
- 全新借钱的合同
- 制造业自动化技术指南
- 医院技术合作协议
- 工程建设项目招标代理协议书
- 商标权转让合同
- 必修3《政治与法治》 选择题专练50题 含解析-备战2025年高考政治考试易错题(新高考专用)
- 二零二五版电商企业兼职财务顾问雇用协议3篇
- 课题申报参考:流视角下社区生活圈的适老化评价与空间优化研究-以沈阳市为例
- 深圳2024-2025学年度四年级第一学期期末数学试题
- 《openEuler操作系统》考试复习题库(含答案)
- 2024-2025学年成都市高新区七年级上英语期末考试题(含答案)
- 17J008挡土墙(重力式、衡重式、悬臂式)图示图集
- 《中南大学模板》课件
- 广东省深圳市南山区2024-2025学年第一学期期末考试九年级英语试卷(含答案)
- T-CISA 402-2024 涂镀产品 切口腐蚀试验方法
- 后勤安全生产
评论
0/150
提交评论