浙江省温州市民办2024届八年级数学第二学期期末综合测试试题含解析_第1页
浙江省温州市民办2024届八年级数学第二学期期末综合测试试题含解析_第2页
浙江省温州市民办2024届八年级数学第二学期期末综合测试试题含解析_第3页
浙江省温州市民办2024届八年级数学第二学期期末综合测试试题含解析_第4页
浙江省温州市民办2024届八年级数学第二学期期末综合测试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省温州市民办2024届八年级数学第二学期期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.关于的一元二次方程有两个不相等的实数根,则的取值范围是()A. B.且 C.且 D.2.一条直线y=kx+b,其中k+b=﹣5、kb=6,那么该直线经过A.第二、四象限 B.第一、二、三象限 C.第一、三象限 D.第二、三、四象限3.如图,在RtABC中,∠ACB=90°,∠A=65°,CD⊥AB,垂足为D,E是BC的中点,连接ED,则∠EDC的度数是()A.25° B.30° C.50° D.65°4.已知y与(x﹣1)成正比例,当x=1时,y=﹣1.则当x=3时,y的值为()A.1 B.﹣1 C.3 D.﹣35.若,则的值用、可以表示为()A. B. C. D.6.己知两个变量之间的关系满足y=-x+2,则当x=-1时,对应的y的值()A.3 B.1 C.-1 D.-37.如图,Rt△ABC中,AC⊥BC,AD平分∠BAC交BC于点D,DE⊥AD交AB于点E,M为AE的中点,BF⊥BC交CM的延长线于点F,BD=4,CD=3.下列结论:①∠AED=∠ADC;②;③ACBE=12;④3BF=4AC;其中正确结论的个数有()A.1个 B.2个 C.3个 D.4个8.一次函数y=k-2x+3的图像如图所示,则k的取值范围是(A.k>3 B.k<3 C.k>2 D.k<29.若,则的值为()A.1 B.-1 C.-7 D.710.下列事件属于必然事件的是()A.抛掷两枚硬币,结果一正一反B.取一个实数的值为1C.取一个实数D.角平分线上的点到角的两边的距离相等11.下列图形中,可以由其中一个图形通过平移得到的是()A. B. C. D.12.如图是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=5,BE=12,则EF的长是()A.7 B.8 C.7 D.7二、填空题(每题4分,共24分)13.计算()•()的结果是_____.14.如图,点A,B分别是反比例函数y=-1x与y=kx的图象上的点,连接AB,过点B作BC⊥x轴于点C,连接AC交y轴于点E.若AB∥x轴,AE:EC=1:2,则k15.关于的方程有实数根,则的取值范围是_________.16.已知在同一坐标系中,某正比例函数与某反比例函数的图像交于A,B两点,若点A的坐标为(-1,4),则点B的坐标为___.17.若等腰三角形的两条边长分别为8cm和16cm,则它的周长为_____cm.18.一张矩形纸片ABCD,已知,.小明按所给图步骤折叠纸片,则线段DG长为______.三、解答题(共78分)19.(8分)如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF,连接EF,分别交AD,BC于点M,N,连接AN,CM.(1)求证:ΔDFM≅ΔBEN;(2)四边形AMCN是平行四边形吗?请说明理由.20.(8分)先化简,再求值:÷(1+),其中x=+1.21.(8分)某校为了开展“书香墨香进校园”活动,购买了一批毛笔和墨水.已知毛笔的单位比墨水的单价多5元,购买毛笔用了450元,墨水用了150元,毛笔数量是墨水数量的2倍.求这批毛笔和墨水的数量分别是多少?22.(10分)如图,,分别以为圆心,以长度5为半径作弧,两条弧分别相交于点和,依次连接,连接交于点.(1)判断四边形的形状并说明理由(2)求的长.23.(10分)如图,▱ABCD中,AC为对角线,G为CD的中点,连接AG并廷长交BC的延长线于点F,连接DF,求证:四边形ACFD为平行四边形.24.(10分)把厚度相同的字典整齐地叠放在桌面上,已知字典顶端离地高度与字典本数成一次函数,根据图中所示的信息:(1)若设有x本字典叠成一摞放在这张桌面上,字典的离地高度为y(cm),

求y与x的关系式;(2)每本字典的厚度为多少?25.(12分)下图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家.其中x表示时间,y表示小明离他家的距离.根据图象回答下列问题:①菜地离小明家多远?小明走到菜地用了多少时间?②小明给菜地浇水用了多少时间?③玉米地离菜地、小明家多远?小明从玉米地走回家平均速度是多少?26.二次根式计算:(1);(2);(3)()÷;(4).

参考答案一、选择题(每题4分,共48分)1、B【解题分析】

由方程根的情况,根据判别式可得到关于的不等式,则可求得取值范围;【题目详解】解:因为一元二次方程有两个不相等的实数根,所以>0,且,所以>0,解得:<,又因为,所以,所以且,故选B.【题目点拨】本题考查利用一元二次方程的根的判别式求字母的取值范围,同时考查一元二次方程定义中二次项系数不为0,掌握知识点是解题关键.2、D【解题分析】∵k+b=-5,kb=6,∴kb是一元二次方程的两个根.解得,或.∴k<1,b<1.一次函数的图象有四种情况:①当,时,函数的图象经过第一、二、三象限;②当,时,函数的图象经过第一、三、四象限;③当,时,函数的图象经过第一、二、四象限;④当,时,函数的图象经过第二、三、四象限.∴直线y=kx+b经过二、三、四象限.故选D.3、D【解题分析】

根据三角形内角和定理求出∠B,根据直角三角形的性质得到ED=EB,得到∠EDB=∠B,进而得出∠EDC的度数.【题目详解】解:∵∠ACB=90°,∠A=65°,∴∠B=25°,∵CD⊥AB,E是BC的中点,∴ED=BC=EB,∠ADB=90°,∴∠EDB=∠B=25°,∴∠EDC=90°﹣25°=65°,故选:D.【题目点拨】本题考查的是直角三角形的性质、三角形内角和定理,在直角三角形中,斜边上的中线等于斜边的一半.4、A【解题分析】

利用待定系数法求出一次函数解析式,代入计算即可.【题目详解】解:∵y与(x-1)成正比例,

∴设y=k(x-1),

由题意得,-1=k(1-1),

解得,k=1,

则y=1x-4,

当x=3时,y=1×3-4=1,

故选:A.【题目点拨】本题考查了待定系数法求一次函数解析式,掌握待定系数法求一次函数解析式一般步骤是解题的关键.5、C【解题分析】

根据化简即可.【题目详解】=.故选C.【题目点拨】此题的关键是把写成的形式.6、A【解题分析】

将自变量x的值代入函数解析式求解即可.【题目详解】解:x=-1时,y=-(-1)+2=1+2=1.

故选:A.【题目点拨】本题考查函数值的计算:(1)当已知函数解析式时,求函数值就是求代数式的值;

(2)函数值是唯一的,而对应的自变量可以是多个.7、C【解题分析】

选项①∠AED=90°-∠EAD,∠ADC=90°-∠DAC,∠EAD=∠DAC;②易证△ADE∽△ACD,得DE:DA=DC:AC=3:AC,AC不一定等于6;③根据相似三角形的判定定理得出△BED∽△BDA,再由相似三角形的对应边成比例即可得出结论;④连接DM,可证DM∥BF∥AC,得FM:MC=BD:DC=4:3;易证△FMB∽△CMA,得比例线段求解.【题目详解】∠AED=90°−∠EAD,∠ADC=90°−∠DAC,∵AD平分∠BAC∴∠EAD=∠DAC,∴∠AED=∠ADC.故①选项正确;∵∠EAD=∠DAC,∠ADE=∠ACD=90°,∴△ADE∽△ACD,得DE:DA=DC:AC=3:AC,但AC的值未知,故②不一定正确;由①知∠AED=∠ADC,∴∠BED=∠BDA,又∵∠DBE=∠ABD,∴△BED∽△BDA,∴DE:DA=BE:BD,由②知DE:DA=DC:AC,∴BE:BD=DC:AC,∴AC⋅BE=BD⋅DC=12.故③选项正确;连接DM,则DM=MA.∴∠MDA=∠MAD=∠DAC,∴DM∥BF∥AC,由DM∥BF得FM:MC=BD:DC=4:3;由BF∥AC得△FMB∽△CMA,有BF:AC=FM:MC=4:3,∴3BF=4AC.故④选项正确.综上所述,①③④正确,共有3个.故选C.【题目点拨】此题考查相似三角形的判定与性质,角平分线的性质,解题关键在于作辅助线.8、D【解题分析】

根据一次函数的图象得到关于k的不等式,求出k的取值范围即可.【题目详解】∵一次函数的图象过二、四象限,∴k−2<0,解得k<2.故选:D.【题目点拨】此题考查一次函数图象与系数的关系,解题关键在于判定k的大小.9、D【解题分析】

首先根据非负数的性质,可列方程组求出x、y的值,进而可求出x-y的值.【题目详解】由题意,得:,

解得;

所以x-y=4-(-3)=7;

故选:D.【题目点拨】此题主要考查非负数的性质:非负数的和为1,则每个非负数必为1.10、D【解题分析】

必然事件就是一定发生的事件,据此判断即可解答.【题目详解】A、可能会出现两正,两反或一正一反或一反一正等4种情况,故错误,不合题意;

B、x应取不等于0的数,故错误,不合题意;

C、取一个实数,故错误,不合题意;

D、正确,属于必然事件,符合题意;

故选:D.【题目点拨】本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.11、B【解题分析】

根据平移的定义直接判断即可.【题目详解】解:由其中一个图形平移得到整个图形的是B,

故选:B.【题目点拨】此题主要考查了图形的平移,把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移.注意平移是图形整体沿某一直线方向移动.12、C【解题分析】

12和5为两条直角边长时,求出小正方形的边长7,即可利用勾股定理得出EF的值.【题目详解】∵AE=5,BE=12,即12和5为两条直角边长时,小正方形的边长=12-5=7,∴EF=;故选C.【题目点拨】本题考查了勾股定理、正方形的性质;熟练掌握勾股定理是解决问题的关键.二、填空题(每题4分,共24分)13、-2【解题分析】

利用平方差公式进行展开计算即可得.【题目详解】==-2,故答案为:-2.【题目点拨】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.14、1.【解题分析】

设A(m,-1m),则B(﹣mk,-1m),设AB交y轴于M,利用平行线的性质,得到AM【题目详解】解:设A(m,-1m),则B(﹣mk,-1m),设AB交∵EM∥BC,∴AM:MB=AE:EC=1:1,∴﹣m:(﹣mk)=1:1,∴k=1,故答案为1.【题目点拨】本题考查的知识点是反比例函数系数k的几何意义,解题关键是利用平行线的性质进行解题.15、k≤2【解题分析】

当k-1=0时,解一元一次方程可得出方程有解;当k-1≠0时,利用根的判别式△=16-2k≥0,即可求出k的取值范围.综上即可得出结论.【题目详解】当k-1=0,即k=1时,方程为2x+1=0,解得x=-,符合题意;②当k-1≠0,即k≠1时,△=22-2(k-1)=16-2k≥0,解得:k≤2且k≠1.综上即可得出k的取值范围为k≤2.故答案为k≤2.【题目点拨】本题考查了根的判别式,分二次项系数为零和非零两种情况考虑是解题的关键.16、(1,−4)【解题分析】

根据反比例函数图象上点的坐标特征,正比例函数与反比例函数的两交点坐标关于原点对称.【题目详解】∵反比例函数是中心对称图形,正比例函数与反比例函数的图象的两个交点关于原点对称,

∵一个交点的坐标为(−1,4),

∴它的另一个交点的坐标是(1,−4),

故答案为:(1,−4).【题目点拨】本题考查反比例函数图象的对称性,解题的关键是掌握反比例函数图象的对称性.17、1;【解题分析】

根据已知条件和三角形三边关系可知;等腰三角形的腰长不可能为3cm,只能为8cm,依此即可求得等腰三角形的周长.【题目详解】解:∵等腰三角形的两条边长分别为3cm,8cm,

∴由三角形三边关系可知;等腰三角形的腰长不可能为8cm,只能为16cm,

∴等腰三角形的周长=16+16+8=1cm.

故答案为1.【题目点拨】本题考查了三角形三边关系及等腰三角形的性质,关键是要分两种情况解答.18、【解题分析】

首先证明△DEA′是等腰直角三角形,求出DE,再说明DG=GE即可解决问题.【题目详解】解:由翻折可知:DA′=A′E=4,∵∠DA′E=90°,∴DE=,∵A′C′=2=DC′,C′G∥A′E,∴DG=GE=,故答案为:.【题目点拨】本题考查翻折变换,等腰直角三角形的判定和性质,平行线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.三、解答题(共78分)19、(1)见解析;(2)是,理由见解析【解题分析】

(1)根据平行四边形的性质得出∠BAD=∠BCD,AB∥CD,根据平行线的性质得出∠BAD=∠ADF,∠EBC=∠BCD,∠E=∠F,求出∠ADF=∠EBC,根据全等三角形的判定得出即可;(2)根据全等求出DM=BN,求出AM=CN,根据平行四边形的判定得出即可.【题目详解】(1)证明:在▱ABCD中,∠BAD=∠BCD,∵AB∥CD,∴∠BAD=∠ADF,∠EBC=∠BCD,∴∠ADF=∠EBC,∵延长AB至点E,延长CD至点F,∴∠F=∠E,又∵BE=DF,∴ΔDFM≅ΔBEN;(2)由(1)知ΔDFM≅ΔBEN,∴DM=BN,在▱ABCD中,AD=BC,且AD∥BC∴AD-DM=BC-BN∴AM=CN,且AM∥CN,∴四边形ANCN是平行四边形.【题目点拨】本题考查了平行四边形的性质和判定,全等三角形的性质和判定,平行线的性质等知识点,能综合运用定理进行推理是解此题的关键.20、,.【解题分析】

根据分式的运算法则即可求出答案.【题目详解】解:原式==.当x=+1时,原式==.点睛:本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.21、墨水的单价是10元,则毛笔的单价是15元.【解题分析】

设墨水的单价是x元,则毛笔的单价是(x+5)元,根据用450元购进的毛笔的数量是用150元购进的墨水的数量的2倍建立方程求出其解即可.【题目详解】设墨水的单价是x元,则毛笔的单价是(x+5)元,由题意,得,解得:x=10,经检验,x=10是原方程的根∴x+5=15元,答:墨水的单价是10元,则毛笔的单价是15元.【题目点拨】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.22、(1)见解析(2)6【解题分析】

(1)利用作法得到四边相等,从而可判断四边形ABCD为菱形;(2)根据菱形的性质得OA=OC=4,OB=OD,AC⊥BD,然后利用勾股定理计算出OB,从而得到BD的长【题目详解】(1)由图可知,垂直平分,且所以,四边形为菱形.(2)因为且平分.在中,的长为6.【题目点拨】此题考查菱形的判定,垂直平分线的应用,解题关键在于得到四边相等23、见解析【解题分析】

根据平行四边形的性质证出∠ADC=∠FCD,然后再证明△ADG≌△FCG可得AD=FC,根据一组对边平行且相等的四边形是平行四边形可得结论;【题目详解】证明:∵在▱ABCD中,AD∥BF.∴∠ADC=∠FCD.∵G为CD的中点,∴DG=CG.在△ADG和△FCG中,,∴△ADG≌△FCG(ASA)∴AD=FC.又∵AD∥FC,∴四边形ACFD是平行四边形.【题目点拨】此题主要考查了平行四边形的判定和性质、全等三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.24、(1)y=5x+85,(2)5cm.【解题分析】分析:(1)利用待定系数法即可解决问题;(2)每本字典的厚度==5(cm).详(1)解:根据题意知y与x之间是一次函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论