河南省郑州市七十三中学2024届数学八下期末复习检测模拟试题含解析_第1页
河南省郑州市七十三中学2024届数学八下期末复习检测模拟试题含解析_第2页
河南省郑州市七十三中学2024届数学八下期末复习检测模拟试题含解析_第3页
河南省郑州市七十三中学2024届数学八下期末复习检测模拟试题含解析_第4页
河南省郑州市七十三中学2024届数学八下期末复习检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省郑州市七十三中学2024届数学八下期末复习检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.下列命题:①在函数:y=-1x-1;y=3x;y=;y=-;y=(x<0)中,y随x增大而减小的有3个函数;②对角线互相垂直平分且相等的四边形是正方形;③反比例函数图象是两条无限接近坐标轴的曲线,它只是中心对称图形;④已知数据x1、x1、x3的方差为s1,则数据x1+1,x3+1,x3+1的方差为s3+1.其中是真命题的个数是()A.1个 B.1个 C.3个 D.4个2.如图,平行四边形ABCD对角线AC、BD交于点O,∠ADB=20°,∠ACB=50°,过点O的直线交AD于点E,交BC于点F当点E从点A向点D移动过程中(点E与点A、点D不重合),四边形AFCE的形状变化依次是()A.平行四边形→矩形→平行四边形→菱形→平行四边形B.平行四边形→矩形→平行四边形→正方形→平行四边形C.平行四边形→菱形→平行四边形→矩形→平行四边形D.平行四边形→矩形→菱形→正方形→平行四边形3.下列命题:①两条直线被第三条直线所截,同位角相等;②两点之间,线段最短;③相等的角是对顶角;④直角三角形的两个锐角互余;⑤同角或等角的补角相等.其中真命题的个数是()A.2个 B.3个 C.4个 D.5个4.如果下列各组数是三角形的三边长,那么能组成直角三角形的一组数是()A.,, B.,, C.,, D.,,5.如图,是正内一点,,,,将线段以点为旋转中心逆时针旋转得到线段,下列结论:①可以由绕点逆时针旋转得到;②点与点的距离为8;③;④;其中正确的结论是()A.①②③ B.①③④ C.②③④ D.①②6.在平面直角坐标系中,一次函数y=x﹣1和y=﹣x+1的图象与x轴的交点及x轴上方的部分组成的图象可以表示为函数y=|x﹣1|,当自变量﹣1≤x≤2时,若函数y=|x﹣a|(其中a为常量)的最小值为a+5,则满足条件的a的值为()A.﹣3 B.﹣5 C.7 D.﹣3或﹣57.如图,是等腰直角三角形,是斜边,将绕点逆时针旋转后,能与重合,如果,那么的长等于()A. B. C. D.8.小李家装修地面,已有正三角形形状的地砖,现打算购买不同形状的另一种正多边形地砖,与正三角形地砖一起铺设地面,则小李不应购买的地砖形状是()A.正方形 B.正六边形C.正八边形 D.正十二边形9.已知直线y=kx+b经过一、二、三象限,则直线y=bx-k-2的图象只能是()A. B. C. D.10.若解关于x的方程有增根,则m的值为()A.﹣5 B.5 C.﹣2 D.任意实数二、填空题(每小题3分,共24分)11.如图,如果要使ABCD成为一个菱形,需要添加一个条件,那么你添加的条件是________.12.如图,正方形ABCD的顶点C,A分别在x轴,y轴上,BC是菱形BDCE的对角线.若BC6,BD5,则点D的坐标是_____.13.如图,将沿所在的直线平移得到,如果,,,那么______.14.若关于的分式方程有解,则的取值范围是_______.15.如图,□ABCD的对角线AC,BD相交于点O,点E是CD的中点,△ABD的周长为16cm,则△DOE的周长是_________;16.平面直角坐标系中,将直线l:y=2x-1沿y轴向下平移b个单位长度后后得到直线l′,点A(m,n)是直线l′上一点,且2m-n=3,则b=_______.17.当x______时,分式有意义.18.化简:_______.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,抛物线与轴交于点,与轴交于两点,其对称轴与轴交于点.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点,使的周长最小?若存在,请求出点的坐标;若不存在,请说明理由;(3)连接,在直线的下方的抛物线上,是否存在一点,使的面积最大?若存在,请求出点的坐标;若不存在,请说明理由.20.(6分)已知函数.(1)若这个函数的图象经过原点,求的值(2)若这个函数的图象不经过第二象限,求的取值范围.21.(6分)计算(1);(2)()2﹣(﹣)(+).22.(8分)如图,在中,点,分别为边,的中点,延长到点使.求证:四边形是平行四边形.23.(8分)如图,在中,点、分别是、的中点,平分,交于点,交于点.(1)求证:四边形是菱形;(2)若,,求四边形的周长.24.(8分)甲、乙两组数据单位:如下表:甲11969147771010乙34581288131316(1)根据以上数据填写下表;

平均数众数中位数方差甲9乙9(2)根据以上数据可以判断哪一组数据比较稳定.25.(10分)某校在一次广播操比赛中,甲、乙、丙各班得分如下表:班级服装统一动作整齐动作准确甲808488乙977880丙868083(1)根据三项得分的平均分,从高到低确定三个班级排名顺序.(2)该校规定:服装统一、动作整齐、动作准确三项得分都不得低于80分,并按,,的比例计入总分根据规定,请你通过计算说明哪一组获得冠军.26.(10分)有两个不透明的袋子分别装有红、白两种颜色的球(除颜色不同外其余均相同),甲袋中有2个红球和1个白球,乙袋中有1个红球和3个白球.(1)如果在甲袋中随机摸出一个小球,那么摸到红球的概率是______.(2)如果在乙袋中随机摸出两个小球,那么摸到两球颜色相同的概率是______.(3)如果在甲、乙两个袋子中分别随机摸出一个小球,那么摸到两球颜色相同的概率是多少?(请用列表法或树状图法说明)

参考答案一、选择题(每小题3分,共30分)1、B【解题分析】

解:在函数:y=-1x-1;y=3x;y=;y=-;y=(x<0)中,y随x增大而减小的有3个函数,所以①正确;对角线互相垂直平分且相等的四边形是正方形,所以②正确;反比例函数图象是两条无限接近坐标轴的曲线,它是中心对称图形,也是轴对称图形,所以③错误;已知数据x1、x1、x3的方差为s1,则数据x1+1,x3+1,x3+1的方差也为s1,所以④错误.故选B.【题目点拨】本题考查命题与定理.2、C【解题分析】

先判断出点E在移动过程中,四边形AECF始终是平行四边形,当∠AFC=80°时,四边形AECF是菱形,当∠AFC=90°时,四边形AECF是矩形,即可求解.【题目详解】解:∵点O是平行四边形ABCD的对角线得交点,∴OA=OC,AD∥BC,∴∠ACF=∠CAD,∠ADB=∠DBC=20°∵∠COF=∠AOE,OA=OC,∠DAC=∠ACF∴△AOE≌△COF(ASA),∴AE=CF,∵AE∥CF,∴四边形AECF是平行四边形,∵∠ADB=∠DBC=20°,∠ACB=50°,∴∠AFC>20°当∠AFC=80°时,∠FAC=180°-80°-50°=50°∴∠FAC=∠ACB=50°∴AF=FC∴平行四边形AECF是菱形当∠AFC=90°时,平行四边形AECF是矩形∴综上述,当点E从D点向A点移动过程中(点E与点D,A不重合),则四边形AFCE的变化是:平行四边形→菱形→平行四边形→矩形→平行四边形.故选:C.【题目点拨】本题考查了平行四边形、矩形、菱形的判定的应用,主要考查学生的理解能力和推理能力,题目比较好,难度适中.3、B【解题分析】

解:命题①两条平行线被第三条直线所截,同位角相等,错误,为假命题;命题②两点之间,线段最短,正确,为真命题;命题③相等的角是对顶角,错误,为假命题;命题④直角三角形的两个锐角互余,正确,为真命题;命题⑤同角或等角的补角相等,正确,为真命题,故答案选B.考点:命题与定理.4、C【解题分析】

先求出两小边的平方和,再求出大边的平方,看看是否相等即可.【题目详解】解:A、62+72≠82,所以以6,7,8为边的三角形不是直角三角形,故本选项不符合题意;

B、52+62≠82,所以以5,6,8为边的三角形不是直角三角形,故本选项不符合题意;

C、42+52=()2,所以以,4,5为边的三角形是直角三角形,故本选项符合题意;

D、42+52≠62,所以以4,5,6为边的三角形不是直角三角形,故本选项不符合题意;

故选:C.【题目点拨】本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键.5、A【解题分析】

连接OO′,如图,先利用旋转的性质得BO′=BO=8,∠OBO′=60°,再利用△ABC为等边三角形得到BA=BC,∠ABC=60°,则根据旋转的定义可判断△BO′A可以由△BOC绕点B逆时针旋转60°得到;接着证明△BOO′为等边三角形得到∠BOO′=60°,OO′=OB=8;根据旋转的性质得到AO′=OC=10,利用勾股定理的逆定理证明△AOO′为直角三角形,∠AOO′=90°,于是得到∠AOB=150°;最后利用S四边形AOBO′=S△AOO′+S△BOO′可计算出S四边形AOBO′即可判断.【题目详解】连接OO′,如图,

∵线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,

∴BO′=BO=8,∠OBO′=60°,

∵△ABC为等边三角形,

∴BA=BC,∠ABC=60°,

∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,则①正确;

∵△BOO′为等边三角形,

∴OO′=OB=8,所以②正确;

∵△BO′A可以由△BOC绕点B逆时针旋转60°得到,

∴AO′=OC=10,

在△AOO′中,∵OA=6,OO′=8,AO′=10,

∴OA2+OO′2=AO′2,

∴△AOO′为直角三角形,∠AOO′=90°,

∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,所以③正确;,故④错误,故选:A.【题目点拨】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等边三角形的判定与性质以及勾股定理的逆定理.6、A【解题分析】

分三种情形讨论求解即可解决问题;【题目详解】解:对于函数y=|x﹣a|,最小值为a+1.情形1:a+1=0,a=﹣1,∴y=|x+1|,此时x=﹣1时,y有最小值,不符合题意.情形2:x=﹣1时,有最小值,此时函数y=x﹣a,由题意:﹣1﹣a=a+1,得到a=﹣2.∴y=|x+2|,符合题意.情形2:当x=2时,有最小值,此时函数y=﹣x+a,由题意:﹣2+a=a+1,方程无解,此种情形不存在,综上所述,a=﹣2.故选A.【题目点拨】本题考查两直线相交或平行问题,一次函数的性质等知识,解题的关键是学会用分类讨论的思想解决问题,属于中考常考题型.7、A【解题分析】

解:如图:根据旋转的旋转可知:∠PAP′=∠BAC=90°,AP=AP′=3,根据勾股定理得:,故选A.8、C【解题分析】

根据密铺的条件得,两多边形内角和必须凑出360°,进而判断即可.【题目详解】A.正方形的每个内角是,∴能密铺;B.正六边形每个内角是,∴能密铺;C.正八边形每个内角是,与无论怎样也不能组成360°的角,∴不能密铺;D.正十二边形每个内角是∴能密铺.故选:C.【题目点拨】本题主要考查平面图形的镶嵌,根据平面镶嵌的原理:拼接点处的几个多边形的内角和恰好等于一个圆周角.9、C【解题分析】

由直线y=kx+b经过一、二、三象限可得出k>0,b>0,进而可得出−k−2<0,再利用一次函数图象与系数的关系可得出直线y=bx−k−2的图象经过第一、三、四象限.【题目详解】解:∵直线y=kx+b经过一、二、三象限,∴k>0,b>0,∴−k−2<0,∴直线y=bx−k−2的图象经过第一、三、四象限.故选:C.【题目点拨】本题考查了一次函数图象与系数的关系,牢记“k>0,b>0时,y=kx+b的图象在一、二、三象限;k>0,b<0时,y=kx+b的图象在一、三、四象限”是解题的关键.10、A【解题分析】

增根是化为整式方程后产生的不适合分式方程的根所以应先确定增根的可能值,让最简公分母(x-1))=0,得到x=1,然后代入化为整式方程的方程算出m的值【题目详解】方程两边都乘(x﹣1),得x=3(x﹣1)﹣m,∵原方程有增根,∴最简公分母x﹣1=0,解得x=1,当x=1时,m=﹣1,故m的值是﹣1.故选:A.【题目点拨】此题考查分式方程的增根,解题关键在于利用原方程有增根二、填空题(每小题3分,共24分)11、AB=BC(答案不唯一)【解题分析】试题解析:因为一组邻边相等的平行四边形是菱形,对角线互相垂直平分的四边形是菱形,那么可添加的条件是:AB=BC或AC⊥BD.12、10,3.【解题分析】

过点D作DG⊥BC于点G,根据四边形BDCE是菱形可知BD=CD,可得出△BCD是等腰三角形,即可得到CG=12BC,再根据勾股定理求出【题目详解】过点D作DG⊥BC于点G,∵四边形BDCE是菱形,∴BD=CD,∴△BCD是等腰三角形,∴点G是BC的中点,∴CG=1∴GD=C∵四边形ABCD是正方形,∴AB=BC=6,6+4=10,∴D10,3故答案为:10,3.【题目点拨】本题考查的是正方形的性质,根据题意作出辅助线,利用菱形的性质判断出△BCD是等腰三角形是解题的关键.13、【解题分析】

根据已知条件和平移的性质推出AB=DE=7,△ABC∽△GEC,即可根据相似三角形性质计算GE的长度.【题目详解】解:∵△ABC沿着射线BC的方向平移得到△DEF,AB=7,

∴DE=7,∠A=∠CGE,∠B=∠DEC,

∴△DEF∽△GEC,∴,

∵,,∴,∴EG=,

故填:.【题目点拨】本题主要考查平移的性质、相似三角形的判定和性质,解题的关键在于求证三角形相似,找到对应边.14、【解题分析】

分式方程去分母转化为整式方程,表示出分式方程的解,确定出m的范围即可.【题目详解】解:,去分母,得:,整理得:,显然,当时,方程无解,∴;当时,,∴,解得:;∴的取值范围是:;故答案为:.【题目点拨】此题考查了分式方程的解,始终注意分母不为0这个条件.15、8【解题分析】

∵四边形ABCD是平行四边形,∴O是BD中点,△ABD≌△CDB,又∵E是CD中点,∴OE是△BCD的中位线,∴OE=BC,即△DOE的周长=△BCD的周长,∴△DOE的周长=△DAB的周长.∴△DOE的周长=×16=8cm.16、2【解题分析】

先写出直线l′的解析式为y=2x-1-b,代入点A的坐标得到n=2m-1-b,因为2m-n=3,即可解答出b的值.【题目详解】∵直线l′为y=2x-1沿y轴向下平移b个单位长度,∴直线l′:y=2x-1-b,∵点A(m,n)是直线l′上一点,∴n=2m-1-b又∵且2m-n=3,解得b=2.故答案为:2.【题目点拨】此题考查一次函数,解题关键在于一次函数图象的平移.17、≠【解题分析】试题分析:分式有意义的条件:分式的分母不为0时,分式才有意义.由题意得,.考点:分式有意义的条件点评:本题属于基础应用题,只需学生熟练掌握分式有意义的条件,即可完成.18、【解题分析】

将原式通分,再加减即可【题目详解】==故答案为:【题目点拨】此题考查分式的化简求值,解题关键在于掌握运算法则三、解答题(共66分)19、(1),抛物线的对称轴是;(2)点坐标为.理由见解析;(3)在直线的下方的抛物线上存在点,使面积最大.点的坐标为.【解题分析】

(1)根据点B,C的坐标,利用待定系数法可求出抛物线的解析式,再利用二次函数的性质可求出抛物线的对称轴;(2)连接交对称轴于点,此时的周长最小,利用二次函数图象上点的坐标特征可求出点的坐标,由点,B的坐标,利用待定系数法可求出直线AC的解析式,再利用一次函数图象上点的坐标特征可求出点P的坐标;(3)过点N作NE∥y轴交AC于点E,交x轴于点F,过点A作AD⊥NE于点D,设点N的坐标为(t,t2-t+4)(0<t<5),则点E的坐标为(t,-t+4),进而可得出NE的长,由三角形的面积公式结合S△CAN=S△NAE+S△NCE可得出S△CAN关于t的函数关系式,再利用二次函数的性质即可解决最值问题.【题目详解】(1)根据已知条件可设抛物线的解析式为,∴,∴抛物线的对称轴是;(2)点坐标为.理由如下:∵点(0,4),抛物线的对称轴是,∴点关于对称轴的对称点的坐标为(6,4),如图1,连接交对称轴于点,连接,此时的周长最小.设直线的解析式为,把(6,4),(1,0)代入得,解得,∴,∵点的横坐标为3,∴点的纵坐标为,∴所求点的坐标为.(3)在直线的下方的抛物线上存在点,使面积最大.设点的横坐标为,此时点,如图2,过点作轴交于;作于点,由点(0,4)和点(5,0)得直线的解析式为,把代入得,则,此时,∵,∴,∴当时,面积的最大值为,由得,∴点的坐标为.【题目点拨】本题考查了待定系数法求二次函数解析式、二次函数的性质、轴对称-最短路径问题、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、二次函数图象上点的坐标特征、三角形的面积以及二次函数的最值,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点之间线段最短,确定点P的位置;(3)利用三角形的面积公式结合S△CAN=S△NAE+S△NCE,找出S△CAN关于t的函数关系式.20、(1)的值为3;(2)的取值范围为:.【解题分析】

(1)将原点坐标(0,0)代入解析式即可得到m的值;(2)分两种情况讨论:当2m+1=0,即m=-,函数解析式为:y=-,图象不经过第二象限;当2m+1>0,即m>-,并且m-3≤0,即m≤3;综合两种情况即可得到m的取值范围.【题目详解】(1)将原点坐标(0,0)代入解析式,得m−3=0,即m=3,所求的m的值为3;(2)当2m+1=0,即m=−,函数解析式为:y=−,图象不经过第二象限;②当2m+1>0,即m>−,并且m−3⩽0,即m⩽3,所以有−<m⩽3;所以m的取值范围为.【题目点拨】此题考查一次函数的性质,一次函数图象上点的坐标特征,解题关键在于原点坐标(0,0)代入解析式.21、(1);(2)6+4.【解题分析】

(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先根据完全平方公式和平方差公式计算,然后合并即可.【题目详解】(1)原式==;(2)原式===.【题目点拨】本题考查了二次根式的混合运算.先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.22、证明见解析.【解题分析】

根据中位线的性质得到,再得到,故可证明.【题目详解】解:∵,分别为,的中点,∴EF是△ABC的中位线,∴.∵,∴.∴∴四边形是平行四边形.【题目点拨】此题主要考查平行四边形的判定,解题的关键是熟知三角形的中位线定理及平行四边形的判定方法.23、(1)见解析;(2)8.【解题分析】

(1)由三角形中位线定理可得BC=2DE,DE∥BC,且FG∥AB,可证四边形BDFG是平行四边形,由角平分线的性质和平行线的性质可得DF=DB,即可得四边形BDFG是菱形;(2)由菱形的性质可得DF=BG=GF=BD,由BC=2DE,可求BG的长,即可求四边形BDFG的周长.【题目详解】证明:(1)∵点D、E分别是AB、AC的中点,∴BC=2DE,DE∥BC,且FG∥AB,∴四边形BDFG是平行四边形,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论