2024届广东省云浮市新兴县数学八下期末联考试题含解析_第1页
2024届广东省云浮市新兴县数学八下期末联考试题含解析_第2页
2024届广东省云浮市新兴县数学八下期末联考试题含解析_第3页
2024届广东省云浮市新兴县数学八下期末联考试题含解析_第4页
2024届广东省云浮市新兴县数学八下期末联考试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省云浮市新兴县数学八下期末联考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.已知x=2是关于x的一元二次方程x2﹣x﹣2a=0的一个解,则a的值为()A.0 B.﹣1 C.1 D.22.下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360° B.对角线互相平分 C.对角线相等 D.对角线互相垂直3.如图,在平行四边形ABCD中,下列结论错误的是()A.∠BDC=∠ABD B.∠DAB=∠DCBC.AD=BC D.AC⊥BD4.下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.5.如图,在菱形中,对角线、相交于点,下列结论中不一定成立的是()A. B. C. D.6.等式成立的x的取值范围在数轴上可表示为(

)A. B. C. D.7.下列二次根式中,是最简二次根式的是()A. B. C. D.8.若n是实数,且n>0,则一次函数y=﹣nx+n的图象经过的象限是()A.一、二、三 B.一、三、四 C.一、二、四 D.二、三、四9.如图,过正五边形的顶点作直线,则的度数为()A. B. C. D.10.关于反比例函数y=的下列说法正确的是()①该函数的图象在第二、四象限;②A(x1、y1)、B(x2、y2)两点在该函数图象上,若x1<x2,则y1<y2;③当x>2时,则y>-2;④若反比例函数y=与一次函数y=x+b的图象无交点,则b的范围是-4<b<4.A.①③ B.①④ C.②③ D.②④二、填空题(每小题3分,共24分)11.如图,AB∥CD∥EF,若AE=3CE,DF=2,则BD的长为________.12.如图,在Rt△ABC中,BD平分∠ABC交AC于点D,过D作DE∥BC交AB于点E,若DE刚好平分∠ADB,且AE=a,则BC=_____.13.若方程x2﹣3x﹣1=0的两根为x1、x2,则的值为_____.14.一次函数y=kx+b(k,b是常数,k≠0)的图象如图所示,则不等式kx+b<0的解集是___.15.如图,已知矩形的面积为,依次取矩形各边中点、、、,顺次连结各中点得到第个四边形,再依次取四边形各边中点、、、,顺次连结各中点得到第个四边形,……,按照此方法继续下去,则第个四边形的面积为________.16.如图,四边形ABCD是平行四边形,点E是边CD上的一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正确的有_____.(填序号)17.如图,直线y=mx与双曲线y=交于A、B两点,D为x轴上一点,连接BD交y轴与点C,若C(0,-2)恰好为BD中点,且△ABD的面积为6,则B点坐标为__________.18.已知m+3n的值为2,则﹣m﹣3n的值是__.三、解答题(共66分)19.(10分)如图,在平行四边形ABCD中,过AC中点O作直线,分别交AD、BC于点E、F.求证:△AOE≌△COF.20.(6分)某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分、80分、90分、100分,并根据统计数据绘制了如下不完整的统计图表:乙校成绩统计表分数/分人数/人707809011008(1)在图①中,“80分”所在扇形的圆心角度数为________;(2)请你将图②补充完整;(3)求乙校成绩的平均分;(4)经计算知s甲2=135,s乙2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.21.(6分)如图,一次函数与反比例函数的图象交于A(1,4),B(4,n)两点.(1)求反比例函数和一次函数的解析式;(2)点P是x轴上的一动点,当PA+PB最小时,求点P的坐标;(3)观察图象,直接写出不等式的解集.22.(8分)某校要设计一座高的雕像(如图),使雕像的点(肚脐)为线段(全身)的黄金分割点,上部(肚脐以上)与下部(肚脐以下)的高度比为黄金比.则雕像下部设计的高度应该为______(结果精确到)米.(,结果精确到).23.(8分)如图,在中,点对角线上,且,连接。求证:(1);(2)四边形是平行四边形。24.(8分)已知二次函数(,为常数).(1)当,时,求二次函数的最小值;(2)当时,若在函数值的情况下,只有一个自变量的值与其对应,求此时二次函数的解析式;(3)当时,若在自变量的值满足≤≤的情况下,与其对应的函数值的最小值为21,求此时二次函数的解析式.25.(10分)阅读下列材料,完成(1)、(2)小题.在平面直角坐标系中,已知轴上两点,的距离记作,如果,是平面上任意两点,我们可以通过构造直角三角形来求间的距离,如图1,过点、分别向轴、轴作垂线,和,,垂足分别是,,,,直线交于点,在中,,∴∴,我们称此公式为平面直角坐标系内任意两点,间的距离公式(1)直接应用平面内两点间距离公式计算点,的距离为_________(2)如图2,已知在平面直角坐标系中有两点,,为轴上任意一点,求的最小值26.(10分)如图,某中学准备在校园里利用院墙的一段再围三面篱笆,形成一个矩形花园(院墙长米),现有米长的篱笆.(1)请你设计一种围法(篱笆必须用完),使矩形花园的面积为米.(2)如何设计可以使得围成的矩形面积最大?最大面积是多少?

参考答案一、选择题(每小题3分,共30分)1、C【解题分析】试题分析:把方程的解代入方程,可以求出字母系数a的值.∵x=2是方程的解,∴4﹣2﹣2a=0,∴a=1.故本题选C.【考点】一元二次方程的解;一元二次方程的定义.2、C【解题分析】

矩形与菱形相比,菱形的四条边相等、对角线互相垂直;矩形四个角是直角,对角线相等,由此结合选项即可得出答案.【题目详解】A、菱形、矩形的内角和都为360°,故本选项错误;B、对角互相平分,菱形、矩形都具有,故本选项错误;C、对角线相等菱形不具有,而矩形具有,故本选项正确D、对角线互相垂直,菱形具有而矩形不具有,故本选项错误,故选C.【题目点拨】本题考查了菱形的性质及矩形的性质,熟练掌握矩形的性质与菱形的性质是解题的关键.3、D【解题分析】

根据平行四边形的性质进行判断即可.【题目详解】∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BDC=∠ABD,故选项A正确;∵四边形ABCD是平行四边形,∴∠DAB=∠DCB,故选项B正确;∵四边形ABCD是平行四边形,∴AD=BC,故选项C正确;由四边形ABCD是平行四边形,不一定得出AC⊥BD,故选D.【题目点拨】本题主要考查平行四边形的性质,掌握平行四边形的相关知识点是解答本题的关键.4、A【解题分析】

根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据定义进行分析即可.【题目详解】解:A、既是轴对称图形又是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.【题目点拨】此题主要考查了中心对称图形和轴对称图形,关键是掌握中心对称图形和轴对称图形的定义.5、D【解题分析】

根据菱形的性质即可一一判断【题目详解】解:∵四边形是菱形,∴,,,故A、B、C正确,故选:D.【题目点拨】本题考查菱形的性质,解题的关键是熟练掌握基本知识,属于中考基础题.6、B【解题分析】

根据二次根式有意义的条件即可求出的范围.【题目详解】由题意可知:,解得:,故选:.【题目点拨】考查二次根式的意义,解题的关键是熟练运用二次根式有意义的条件.7、A【解题分析】

直接利用最简二次根式的定义分析得出答案.【题目详解】A.是最简二次根式,故此选项正确;B.,故此选项错误;C.,故此选项错误;D.,故此选项错误.故选A.【题目点拨】本题考查了最简二次根式,正确把握最简二次根式的定义是解题的关键.8、C【解题分析】

根据题意,在一次函数y=﹣nx+n中,﹣n<0,n>0,结合函数图象的性质可得答案.【题目详解】解:根据题意,在一次函数y=﹣nx+n中,﹣n<0,n>0,则函数的图象过一、二、四象限,故选:C.【题目点拨】本题考查一次函数的图象的性质,应该识记一次函数y=kx+b在k、b符号不同情况下所在的象限.9、A【解题分析】

由两直线平行,内错角相等及正五边形内角的度数即可求解.【题目详解】解:由正五边形ABCDE可得,又故答案为:A【题目点拨】本题主要考查了正多边形的内角及平行线的性质,掌握正多边形内角的求法是解题的关键.正n边形每个内角的度数为.10、B【解题分析】【分析】根据反比例函数的图象与性质逐一进行判断即可得.【题目详解】①k=-4<0,图象在二、四象限,故①正确;②若A(x1、y1)在二象限,B(x2、y2)在四象限,满足了x1<x2,但y1>y2,故②错误;③当x=2时,y=-2,因为在每一象限内,y随着x的增大而增大,所以当x>2时,y>-2,故③错误;④联立,则有,整理得:x2+bx+4=0,因为两函数图象无交点,则方程x2+bx+4=0,无实数根,即b2-4×4<0,所以-4<b<4,故选B.【题目点拨】本题考查了反比例函数的图象与性质,熟练掌握反比例函数的图象与性质是解题的关键.二、填空题(每小题3分,共24分)11、1【解题分析】

根据平行线分线段成比例定理列出比例式,代入计算得到答案.【题目详解】解:∵AB∥CD∥EF,,.解得,BD=1,

故答案为:1.【题目点拨】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.12、6a【解题分析】

根据角平分线的定义得到∠ABD=∠CBD,根据平行线的性质得到∠ADE=∠C,∠EDB=∠CBD,求得∠C=30°,根据含30°角的直角三角形的性质即可得到结论.【题目详解】∵BD平分∠ABC,∴∠ABD=∠CBD,∵DE∥BC,∴∠ADE=∠C,∠EDB=∠CBD,∵DE平分∠ADB,∴∠ADE=∠EDB,∴∠CBD=∠C,∴∠ABC=2∠C,∵∠A=90°,∴∠ABC+∠C=90°,∴∠C=30°,∴∠ADE=30°,∵AE=a,∴DE=2a,∵∠EDB=∠DBC,∠DBE=∠EBD,∴BE=DE=2a,∴AB=3a,∴BC=2AB=6a.故答案为:6a.【题目点拨】本题考查角平分线的定义、平行线的性质、及含30°角的直角三角形的性质,熟练掌握30°角所对的直角边等于斜边一半的性质是解题关键.13、-3【解题分析】

解:因为的两根为x1,x2,所以=故答案为:-314、x<−2.【解题分析】

由图象可知kx+b=0的解为x=-2,所以kx+b<0的解集也可观察出来.【题目详解】从图象得知一次函数y=kx+b(k,b是常数,k≠0)的图象经过点(−2,0),并且函数值y随x的增大而增大,因而不等式kx+b<0的解集是x<−2.故答案为:x<−2.【题目点拨】此题考查一次函数与一元一次不等式,解题关键在于结合函数图象进行解答.15、【解题分析】

根据矩形ABCD的面积、四边形A1B1C1D1面积、四边形A2B2C2D2的面积、四边形A3B3C3D3的面积,即可发现中点四边形的面积等于原四边形的面积的一半,找到规律即可解题.【题目详解】解:顺次连接矩形ABCD四边的中点得到四边形A1B1C1D1,则四边形A1B1C1D1的面积为矩形ABCD面积的,顺次连接四边形A1B1C1D1四边的中点得到四边形A2B2C2D2,则四边形A2B2C2D2的面积为四边形A1B1C1D1面积的一半,即为矩形ABCD面积的,顺次连接四边形A2B2C2D2四边的中点得四边形A3B3C3D3,则四边形A3B3C3D3的面积为四边形A2B2C2D2面积的一半,即为矩形ABCD面积的,故中点四边形的面积等于原四边形的面积的一半,则四边形AnBnCnDn面积为矩形ABCD面积的,又∵矩形ABCD的面积为1,∴四边形AnBnCnDn的面积=1×=,故答案为:.【题目点拨】本题考查了中点四边形以及矩形的性质的运用,找到连接矩形、菱形中点所得的中点四边形的面积为原四边形面积的一半是解题的关键.16、①②③④【解题分析】分析:分别利用平行线的性质结合线段垂直平分线的性质以及等腰三角形的性质分别判断得出答案.详解:∵BC=EC,∴∠CEB=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CEB=∠EBF,∴∠CBE=∠EBF,∴①BE平分∠CBF,正确;∵BC=EC,CF⊥BE,∴∠ECF=∠BCF,∴②CF平分∠DCB,正确;∵DC∥AB,∴∠DCF=∠CFB,∵∠ECF=∠BCF,∴∠CFB=∠BCF,∴BF=BC,∴③正确;∵FB=BC,CF⊥BE,∴B点一定在FC的垂直平分线上,即PB垂直平分FC,∴PF=PC,故④正确.故答案为①②③④.点睛:本题考查内容较多,由BC=EC,得∠CEB=∠CBE,再由平行四边形的性质得∠CEB=∠EBF,可得BE平分∠CBF;再由等腰三角形的判定与性质可得CF平分∠DCB,BC=FB;由线段垂直平分线的判定可得PF=PC.17、(,-4)【解题分析】

设点B坐标为(a,b),由点C(0,-2)是BD中点可得b=-4,D(-a,0),根据反比例函数的对称性质可得A(-a,4),根据A、D两点坐标可得AD⊥x轴,根据△ABD的面积公式列方程可求出a值,即可得点B坐标.【题目详解】设点B坐标为(a,b),∵点C(0,-2)是BD中点,点D在x轴上,∴b=-4,D(-a,0),∵直线y=mx与双曲线y=交于A、B两点,∴A(-a,4),∴AD⊥x轴,AD=4,∵△ABD的面积为6,∴S△ABD=AD×2a=6∴a=,∴点B坐标为(,-4)【题目点拨】本题考查反比例函数的性质,反比例函数图象是以原点为对称中心的双曲线,根据反比例函数的对称性表示出A点坐标是解题关键.18、.【解题分析】

首先将原式变形,进而把已知代入,再利用二次根式的性质化简进而计算得出答案.【题目详解】解:∵m+3n=,∴﹣m﹣3n===,故答案为:.【题目点拨】本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的性质和整体代入思想的运用.三、解答题(共66分)19、见详解.【解题分析】

根据平行四边形的性质可知:OA=OC,∠AEO=∠OFC,∠EAO=∠OCF,所以△AOE≌△COF【题目详解】证明:∵四边形ABCD是平行四边形,∴AD∥BC∴∠EAO=∠FCO又∵∠AOE和∠COF是对顶角,∴∠AOE=∠COF∵O是AC的中点,∴OA=OC在△AOE和△COF中,∴△AOE≌△COF20、(1)54°;(2)补图见解析;(3)85分;(4)甲校20名同学的成绩相对乙校较整齐.【解题分析】试题分析:(1)根据统计图可知甲班70分的有6人,从而可求得总人数,然后可求得成绩为80分的同学所占的百分比,最后根据圆心角的度数=360°×百分比即可求得答案;(2)用总人数减去成绩为70分、80分、90分的人数即可求得成绩为100分的人数,从而可补全统计图;(3)先求得乙班成绩为80分的人数,然后利用加权平均数公式计算平均数;(4)根据方差的意义即可做出评价.试题解析:(1)6÷30%=20,3÷20=15%,360°×15%=54°;(2)20-6-3-6=5,统计图补充如下:(3)20-1-7-8=4,=85;(4)∵S甲2<S乙2,∴甲班20同名同学的成绩比较整齐.21、(1)反比例函数的解析式为;一次函数的解析式为y=-x+5;(2)点P的坐标为(,0);(3)x<0或1≤x≤4【解题分析】

(1)将点A(1,4)代入可得m的值,求得反比例函数的解析式;根据反比例函数解析式求得点B坐标,再由A、B两点的坐标可得一次函数的解析式;(2)作B关于x轴的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,根据B的坐标求得B′的坐标,然后根据待定系数法求得直线AB′的解析式,进而求得与x轴的交点P即可.(3)根据图象得出不等式的解集即可。【题目详解】解:(1)把A(1,4)代入,得:m=4,

∴反比例函数的解析式为;把B(4,n)代入,得:n=1,

∴B(4,1),

把A(1,4)、(4,1)代入y=kx+b,得:∴一次函数的解析式为y=-x+5;(2)如图,作B关于x轴的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,

∵B(4,1),

∴B′(4,-1),

设直线AB′的解析式为y=px+q,解得∴直线AB′的解析式为令y=0,得解得∴点P的坐标为(,0)(3)根据图象得当x<0或1≤x≤4时,一次函数y=-x+5的图象在反比例函数的上方。∴不等式的解集为x<0或1≤x≤4。【题目点拨】本题主要考查反比例函数和一次函数的交点及待定系数法求函数解析式、轴对称-最短路线问题,掌握图象的交点的坐标满足两个函数解析式是解题的关键.22、【解题分析】

设雕像下部的设计高度为xm,那么雕像上部的高度为(2-x)m.根据雕像上部与下部的高度之比等于下部与全部的高度比,列出方程求解即可.【题目详解】解:设雕像下部的设计高度为xm,那么雕像上部的高度为(2-x)m.

依题意,得解得(不合题意,舍去).经检验,是原方程的根.雕像下部设计的高度应该为:1.236m故答案为:1.236m【题目点拨】本题考查了黄金分割的应用,利用黄金分割中成比例的对应线段是解决问题的关键.23、(1)见解析;(2)四边形是平行四边形,见解析.【解题分析】

(1)根据全等三角形的判定方法SAS,判断出△ADE≌△CBF.

(2)首先判断出DE∥BF;然后根据一组对边平行且相等的四边形是平行四边形,推得四边形DEBF是平行四边形即可.【题目详解】证明:(1)∵四边形是平行四边形,∴,∴,在和中,∴(SAS);(2)由(1)可得,∴,∴,∴,∴,又∵,∴四边形是平行四边形.【题目点拨】此题主要考查了平行四边形的判定和性质的应用,以及全等三角形的判定和性质的应用,要熟练掌握.24、(1)二次函数取得最小值-1;(2)或;(3)或.【解题分析】

(1)当b=2,c=-3时,二次函数的解析式为,把这个解析式化为顶点式利用二次函数的性质即可求最小值.(2)当c=5时,二次函数的解析式为,又因函数值y=1的情况下,只有一个自变量x的值与其对应,说明方程有两个相等的实数根,利用即可解得b值,从而求得函数解析式.(3)当c=b2时,二次函数的解析式为,它的图象是开口向上,对称轴为的抛物线.分三种情况进行讨论,①对称轴位于b≤x≤b+3范围的左侧时,即<b;②对称轴位于b≤x≤b+3这个范围时,即b≤≤b+3;③对称轴位于b≤x≤b+3范围的右侧时,即>b+3,根据列出的不等式求得b的取值范围,再根据x的取值范围b≤x≤b+3、函数的增减性及对应的函数值y的最小值为21可列方程求b的值(不合题意的舍去),求得b的值代入也就求得了函数的表达式.【题目详解】解:(1)当b=2,c=-3时,二次函数的解析式为,即.∴当x=-1时,二次函数取得最小值-1.(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论