




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古呼和浩特回民中学2024届数学八下期末综合测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,在平行四边形ABCD中,∠B=60°,将△ABC沿对角线AC折叠,点B的对应点落在点E处,且点B,A,E在一条直线上,CE交AD于点F,则图中等边三角形共有()A.4个 B.3个 C.2个 D.1个2.如图,已知在平行四边形中,是对角线上的两点,则以下条件不能判断四边形是平行四边形的是()A.B.C.D.3.如图,在平行四边形ABCD中,AD=7,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A.2 B.52 C.3 D.4.已知实数a在数轴上的位置如图所示,则化简的结果为()A.1 B.﹣1 C.1﹣2a D.2a﹣15.上复习课时李老师叫小聪举出一些分式的例子,他举出了:,,其中正确的个数为().A.2 B.3 C.4 D.56.一元二次方程的两根是()A.0,1 B.0,2 C.1,2 D.1,7.函数y=中,自变量x的取值范围是()A.x>-3 B.x≠0 C.x>-3且x≠0 D.x≠-38.从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AD=CD C.AB=BC D.AC=BD9.点A(1,-2)关于x轴对称的点的坐标是()A.(1,-2) B.(-1,2) C.(-1,-2) D.(1,2)10.当有意义时,a的取值范围是()A.a≥2 B.a>2 C.a≠2 D.a≠-2二、填空题(每小题3分,共24分)11.A、B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回,返回途中与乙车相遇。如图是它们离A城的距离(km)与行驶时间(h)之间的函数图象。当它们行驶7(h)时,两车相遇,则乙车速度的速度为____________.12.如图,点B是反比例函数()图象上一点,过点B作x轴的平行线,交轴于点A,点C是轴上一点,△ABC的面积是2,则=______.13.某商场品牌手机经过5、6月份连续两次降价,每部售价由5000元降到4050元,设平均每次降价的百分率为x,根据题意可列方程:_____.14.已知分式方程+=,设,那么原方程可以变形为__________15.如图,以的三边为边向外作正方形,其面积分别为,且,当__________时..16.已知的面积为27,如果,,那么的周长为__________.17.如图,函数()和()的图象相交于点,则不等式的解集为_________.18.在平面直角坐标系xOy中,已知A(0,1),B(1,0),C(3,1),若以A、B、C、D为顶点的四边形是平行四边形,则点D的坐标是_____________.三、解答题(共66分)19.(10分)(1)如图①,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,交AD于点E,交BC于点F,连接BE、DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数;(2)把(1)中菱形BFDE进行分离研究,如图②,点G、I分别在BF、BE边上,且BG=BI,连接GD,H为GD的中点,连接FH并延长,交ED于点J,连接IJ、IH、IF、IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图③,当矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE、EF、DF,使△DEF是等腰直角三角形,DF交AC于点G.请直接写出线段AG、GE、EC三者之间满足的数量关系.20.(6分)已知:如图,已知直线AB的函数解析式为
,AB与y轴交于点
,与x轴交于点
.(1)在答题卡上直接写出A,B两点的坐标;(2)若点P(a,b)为线段AB上的一个动点,作PE⊥y轴于点E,PF⊥x轴于点
F,连接EF.问:①若的面积为
S,求S关于a的函数关系式;②
是否存在点P,使EF的值最小?若存在,求出EF的最小值;若不存在,请说明理由.21.(6分)如图,在边长为1的小正方形组成的网格中,的三个顶点均在格点上,请按要求完成下列各题:(1)画线段,且使,连接;(2)线段的长为________,的长为________,的长为________;(3)是________三角形,四边形的面积是________;(4)若点为的中点,为,则的度数为________.22.(8分)如图,在平面直角坐标系中,直线:经过,分别交轴、直线、轴于点、、,已知.(1)求直线的解析式;(2)直线分别交直线于点、交直线于点,若点在点的右边,说明满足的条件.23.(8分)如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1、BC1分别交于点E.F.(1)求证:△BCF≌△BA1D.(2)当∠C=α度时,判定四边形A1BCE的形状并说明理由.24.(8分)如图,矩形的对角线垂直平分线与边、分别交于点,求证:四边形为菱形.25.(10分)在小正方形组成的15×15的网格中,四边形ABCD和四边形A′B′C′D′的位置如图所示.(1)现把四边形ABCD绕D点按顺时针方向旋转90°,画出相应的图形A1B1C1D1,(1)若四边形ABCD平移后,与四边形A′B′C′D′成轴对称,写出满足要求的一种平移方法,并画出平移后的图形A1B1C1D1.26.(10分)(1)计算:;(2)简化:
参考答案一、选择题(每小题3分,共30分)1、B【解题分析】分析:根据折叠的性质可得∠E=∠B=60°,进而可证明△BEC是等边三角形,再根据平行四边形的性质可得:AD∥BC,所以可得∠EAF=60°,进而可证明△EFA是等边三角形,由等边三角形的性质可得∠EFA=∠DFC=60°,又因为∠D=∠B=60°,进而可证明△DFC是等边三角形,问题得解.详解:∵将△ABC沿对角线AC折叠,点B的对应点落在点E处,∴∠E=∠B=60°,∴△BEC是等边三角形,∵四边形ABCD是平行四边形,∴AD∥BC,∠D=∠B=60°,∴∠B=∠EAF=60°,∴△EFA是等边三角形,∵∠EFA=∠DFC=60°,∠D=∠B=60°,∴△DFC是等边三角形,∴图中等边三角形共有3个,故选B.点睛:本题考查了平行四边形的性质、折叠的性质以及等边三角形的判定和性质,解题的关键是熟记等边三角形的各种判定方法特别是经常用到的判定方法:三个角都相等的三角形是等边三角形.2、A【解题分析】
连接AC与BD相交于O,根据平行四边形的对角线互相平分可得OA=OC,OB=OD,再根据对角线互相平分的四边形是平行四边形,只要证明得到OE=OF即可,然后根据各选项的条件分析判断即可得解.【题目详解】解:如图,连接AC与BD相交于O,
在▱ABCD中,OA=OC,OB=OD,
要使四边形AECF为平行四边形,只需证明得到OE=OF即可;
A、AF=EF无法证明得到OE=OF,故本选项正确.
B、∠BAE=∠DCF能够利用“角角边”证明△ABE和△CDF全等,从而得到DF=BE,则OB-BE=OD-DF,即OE=OF,故本选项错误;
C、若AF⊥CF,CE⊥AE,由直角三角形的性质可得OE=AC=OF,故本选项错误;
D、若BE=DF,则OB-BE=OD-DF,即OE=OF,故本选项错误;
故选:A.【题目点拨】本题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定方法是解题的关键.3、D【解题分析】
利用平行四边形的性质以及角平分线的性质得出∠DEC=∠DCE,进而得出DE=DC=AB求出即可.【题目详解】解:∵在▱ABCD中,CE平分∠BCD交AD于点E,∴∠DEC=∠ECB,∠DCE=∠ECB,AB=DC,∴∠DEC=∠DCE,∴DE=DC=AB,∵AD=7,AE=3,∴DE=AD-AE=1∴AB=DE=1.故选:D.【题目点拨】此题主要考查了平行四边形的性质以及角平分线的性质,得出DE=DC=AB是解题关键.4、A【解题分析】
先由点a在数轴上的位置确定a的取值范围及a-1的符号,再代入原式进行化简即可【题目详解】由数轴可知0<a<1,所以,=1,选A。【题目点拨】此题考查二次根式的性质与化简,实数与数轴,解题关键在于确定a的大小5、B【解题分析】
根据分式定义:如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式进行分析即可.【题目详解】解:在,中,是分式,只有3个,
故选:B.【题目点拨】本题考查了分式,关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母.6、A【解题分析】
利用因式分解法解答即可得到方程的根.【题目详解】解:,,解得,.故选:A.【题目点拨】本题主要考查了一元二次方程的解法,要根据不同的题目采取适当的方法解题.7、D【解题分析】试题分析:根据分式的意义,可知其分母不为0,可得x+3≠0,解得x≠-3.故选D8、D【解题分析】
根据菱形的判定方法结合各选项的条件逐一进行判断即可得.【题目详解】A、对角线互相垂直的平行四边形是菱形,故A选项不符合题意;B、有一组邻边相等的平行四边形是菱形,故B选项不符合题意;C、有一组邻边相等的平行四边形是菱形,故C选项不符合题意;D、对角线相等的平行四边形是矩形,故D选项符合题意,故选D.【题目点拨】本题考查了菱形的判定,熟练掌握菱形的判定方法是解答本题的关键.9、D【解题分析】
根据关于横轴对称的点,横坐标不变,纵坐标变成相反数进行求解即可.【题目详解】点P(m,n)关于x轴对称点的坐标P′(m,-n),所以点A(1,-2)关于x轴对称的点的坐标是(1,2),故选D.10、B【解题分析】
根据二次根式及分式有意义的条件即可解答.【题目详解】∵有意义,∴a-2>0,∴a>2.【题目点拨】本题考查了二次根式及分式有意义的条件,熟知二次根式及分式有意义的条件是解决问题的关键.二、填空题(每小题3分,共24分)11、75千米/小时【解题分析】
甲返程的速度为:600÷(14−6)=75km/h,设已车的速度为x,由题意得:600=7x+75,即可求解.【题目详解】解:甲返程的速度为:600÷(14−6)=75km/h,设乙车的速度为x,由题意得:600=7x+75,解得:x=75,故答案为75千米/小时.【题目点拨】本题考查由图象理解对应函数关系及其实际意义,应把所有可能出现的情况考虑清楚.12、1【解题分析】
根据在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|=2,再根据反比例函数的图象位于第一象限即可求出k的值.【题目详解】连接OB.∵AB∥x轴,∴S△AOB=S△ACB=2,根据题意可知:S△AOB|k|=2,又反比例函数的图象位于第一象限,k>0,则k=1.故答案为1.【题目点拨】本题考查了反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.13、5000(1﹣x)2=1【解题分析】
根据现在售价5000元月平均下降率现在价格1元,即可列出方程.【题目详解】解:设平均每次降价的百分率为x,根据题意可列方程:5000(1﹣x)2=1.故答案为:5000(1﹣x)2=1.【题目点拨】此题主要考查了由实际问题抽象出一元二次方程,关键是掌握增长率问题的计算公式:变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为.14、=【解题分析】【分析】运用整体换元法可得到结果.【题目详解】设,则分式方程+=,可以变形为=故答案为:=【题目点拨】本题考核知识点:分式方程.解题关键点:掌握整体换元方法.15、【解题分析】
先设Rt△ABC的三边分别为a、b、c,再分别用a、b、c表示S1、S2、S3的值,由勾股定理即可得出S2的值.【题目详解】解:设Rt△ABC的三边分别为a、b、c,∴S1=a2=9,S2=b2,S3=c2=25,∵△ABC是直角三角形,∴a2+b2=c2,即S1+S2=S3,∴S2=S3−S1=16.故答案为:16.【题目点拨】此题主要考查了正方形的面积公式及勾股定理的应用,关键是熟练掌握勾股定理:在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方.16、1【解题分析】
过点A作交BC于点E,先根据含1°的直角三角形的性质得出,设,则,根据的面积为27建立方程求出x的值,进而可求出AB,CD的长度,最后利用周长公式求解即可.【题目详解】过点A作交BC于点E,∵,,.∵,∴设,则.∵的面积为27,,即,解得或(舍去),∴,∴的周长为.故答案为:1.【题目点拨】本题主要考查含1°的直角三角形的性质及平行四边形的周长和面积,掌握含1°的直角三角形的性质并利用方程的思想是解题的关键.17、【解题分析】
写出直线在直线下方部分的的取值范围即可.【题目详解】解:由图可知,不等式的解集为;故答案为:.【题目点拨】本题考查了一次函数与一元一次不等式,此类题目,利用数形结合的思想求解是解题的关键.18、(-2,0)或(4,0)或(2,2)【解题分析】
分三种情况:①BC为对角线时,②AB为对角线时,③AC为对角线时;由平行四边形的性质容易得出点D的坐标.【题目详解】解:分三种情况:①AB为对角线时,点D的坐标为(-2,0);②BC为对角线时,点D的坐标为(4,0);
③AC为对角线时,点D的坐标为(2,2).
综上所述,点D的坐标可能是(-2,0)或(4,0)或(2,2).故答案为(-2,0)或(4,0)或(2,2).【题目点拨】本题考查平行四边形的性质、坐标与图形的性质;熟练掌握平行四边形的性质是解题的关键.三、解答题(共66分)19、(1)①详见解析;②60°.(1)IH=FH;(3)EG1=AG1+CE1.【解题分析】
(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.②先证明∠ABD=1∠ADB,推出∠ADB=30°,延长即可解决问题.(1)IH=FH.只要证明△IJF是等边三角形即可.(3)结论:EG1=AG1+CE1.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.【题目详解】(1)①证明:如图1中,∵四边形ABCD是矩形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,在△DOE和△BOF中,,∴△DOE≌△BOF,∴EO=OF,∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,OB=OD,∴EB=ED,∴四边形EBFD是菱形.②∵BE平分∠ABD,∴∠ABE=∠EBD,∵EB=ED,∴∠EBD=∠EDB,∴∠ABD=1∠ADB,∵∠ABD+∠ADB=90°,∴∠ADB=30°,∠ABD=60°,∴∠ABE=∠EBO=∠OBF=30°,∴∠EBF=60°.(1)结论:IH=FH.理由:如图1中,延长BE到M,使得EM=EJ,连接MJ.∵四边形EBFD是菱形,∠B=60°,∴EB=BF=ED,DE∥BF,∴∠JDH=∠FGH,在△DHJ和△GHF中,,∴△DHJ≌△GHF,∴DJ=FG,JH=HF,∴EJ=BG=EM=BI,∴BE=IM=BF,∵∠MEJ=∠B=60°,∴△MEJ是等边三角形,∴MJ=EM=NI,∠M=∠B=60°在△BIF和△MJI中,,∴△BIF≌△MJI,∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF,∴IH⊥JF,∵∠BFI+∠BIF=110°,∴∠MIJ+∠BIF=110°,∴∠JIF=60°,∴△JIF是等边三角形,在Rt△IHF中,∵∠IHF=90°,∠IFH=60°,∴∠FIH=30°,∴IH=FH.(3)结论:EG1=AG1+CE1.理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,∵∠FAD+∠DEF=90°,∴AFED四点共圆,∴∠EDF=∠DAE=45°,∠ADC=90°,∴∠ADF+∠EDC=45°,∵∠ADF=∠CDM,∴∠CDM+∠CDE=45°=∠EDG,在△DEM和△DEG中,,∴△DEG≌△DEM,∴GE=EM,∵∠DCM=∠DAG=∠ACD=45°,AG=CM,∴∠ECM=90°∴EC1+CM1=EM1,∵EG=EM,AG=CM,∴GE1=AG1+CE1.【题目点拨】考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.20、(1);(2)①(-5≤a≤0);②存在,【解题分析】
(1)由直线AB解析式,令x=0与y=0分别求出y与x的值,即可确定出A与B的坐标;(2)①把P坐标代入直线AB解析式,得到a与b的关系式,三角形POB面积等于OB为底边,P的纵坐标为高,表示出S与a的解析式即可;②存在,理由为:利用三个角为直角的四边形为矩形,得到四边形PFOE为矩形,利用矩形的对角线相等得到EF=PO,由O为定点,P为动点,得到OP垂直于AB时,OP取得最小值,利用面积法求出OP的长,即为EF的最小值.【题目详解】解:(1)对于直线AB解析式y=2x+10,令x=0,得到y=10;令y=0,得到x=-5,则A(0,10),B(-5,0);(2)连接OP,如图所示,①∵P(a,b)在线段AB上,∴b=2a+10,由0≤2a+10≤10,得到-5≤a≤0,由(1)得:OB=5,∴则(-5≤a≤0);②存在,理由为:∵∠PFO=∠FOE=∠OEP=90°,∴四边形PFOE为矩形,∴EF=PO,∵O为定点,P在线段AB上运动,∴当OP⊥AB时,OP取得最小值,∵,∴∴EF=OP=综上,存在点P使得EF的值最小,最小值为.【题目点拨】本题属于一次函数综合题,考查的是:一次函数与坐标轴的交点,坐标与图形性质,矩形的判定与性质,勾股定理,以及三角形面积求法,熟练掌握性质及定理是解本题的关键.21、(1)见解析;(2),,5;(3)直角,10;(4)【解题分析】
(1)根据题意,画出AD∥BC且使AD=BC,连接CD;(2)在网格中利用直角三角形,先求AC的值,再求出AC的长,CD的长,AD的长;(3)利用勾股定理的逆定理判断直角三角形,再求出四边形ABCD的面积;(4)把问题转化到Rt△ACB中,利用直角三角形斜边上的中线可知BE=AE=EC,根据等腰三角形性质即可解题.【题目详解】(1)如图所示:AD、CD为所求作(2)根据勾股定理得:故答案为:;;5(3)∵,∴∴是直角三角形,∠ACD=90°∴四边形的面积是:故答案为:直角;10(4)∵,∴四边形ABCD是平行四边形∴AB//CD∴∠BAC=∠ACD=90°在Rt△ACD中,为的中点∴AE=BE=CE,∠ABC+∠ACB=90°∴∠ACB=∠EAC=27°∴∠ABC=63°故答案为:【题目点拨】本题考查了勾股定理及其逆定理的运用,平行四边形的性质关键是运用网格表示线段的长度.22、(1)的直线解析式为;(2)满足的条件为.【解题分析】
(1)由点A、B的坐标用待定系数法解即可;(2)用m分别表示出E、F的横坐标,然后根据F的横坐标大于E的横坐标即可列式求出m的取值范围.【题目详解】(1)解:由题意可得解得:∴的直线解析式为(2)解:已知,点的纵坐标,设∴解得:∵在右边∴∴解得:即满足的条件为【题目点拨】本题考查了用待定系数法求函数解析式及数形结合的思想,正确掌握相关知识点是解题的关键.23、(1)证明见解析(2)四边形A1BCE是菱形【解题分析】
(1)根据等腰三角形的性质得到AB=BC,∠A=∠C,由旋转的性质得到A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,根据全等三角形的判定定理得到△BCF≌△BA1D;(2)由旋转的性质得到∠A1=∠A,根据平角的定义得到∠DEC=180°﹣α
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T/CIMA 0012-2019火锅底料中吗啡、可待因胶体金免疫层析检测卡
- T/CI 120-2023智慧科技馆建设导则
- T/CHTS 10138-2024高速公路服务区收费站设计指南
- T/CHATA 019-2022肺结核患者管理移动应用程序的功能及应用规范
- T/CGAS 026.2-2023瓶装液化石油气管理规范第2部分:平台建设
- T/CECS 10170-2022陶瓷透水砖
- T/CECS 10074-2019绿色建材评价太阳能光伏发电系统
- T/CECS 10036-2019绿色建材评价建筑陶瓷
- T/CCSAS 031-2023蒸馏、蒸发单元操作机械化、自动化设计方案指南
- T/CCS 064-2023煤矿智能化通风系统运维管理规范
- 石油开采业的大数据应用与数据分析
- 中心静脉导管相关血流感染课件
- 风湿免疫疾病的患者教育和自我管理
- 《冷凝器设计》课件
- PDF-规范标准资料
- (完整PPT)上海英文介绍
- 2025年日历日程表含农历可打印
- 锐意进取开拓新市场
- 《电力工程电缆设计规范》
- 人工挖孔桩计算书及相关图纸
- 穿脱隔离衣操作考核评分标准
评论
0/150
提交评论