版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(5)二次函数—2023年初中数学挑战满分全优卷1.如图,和都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将沿着直线l向右移动,当点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A. B.C. D.2.在平面直角坐标系xOy中,抛物线过点,且其对称轴是直线.已知,且,若当时,,则m的取值范围为()A. B. C. D.3.已知抛物线,将抛物线向左或向右平移与x轴交于A,B两点(A在B的左侧),与y轴交于点C.若的面积等于6,则平移的方式有几种()A.1 B.2 C.3 D.44.我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a,b,c,记,则其面积.这个公式也被称为海伦一秦九韶公式.若,,则此三角形面积的最大值为()A. B.4 C. D.55.如图,抛物线QUOTEy=ax2+bx+c(a≠0)的对称轴是直线QUOTEx=-1,并与x轴交于A,B两点,若QUOTEOA=3OB,则下列结论中:①;②③④QUOTE①abc>0;QUOTE②(a+c)2-b2=0QUOTE③3a+2c<0若m为任意实数,则QUOTEam2+b(m+1)≥a,正确的个数是()A.1QUOTE1 B.2 C.3 D.46.如图,在菱形ABCD中,,,点Q为AD边上动点,点P为AB边上点,,当点Q从点A出发运动到点D的过程中,面积的最大值是()A. B. C. D.7.如图,已知抛物线的对称轴为直线,过其顶点M的一条直线与该抛物线的另一个交点为.要在坐标轴上找一点P,使得的周长最小,则点P的坐标为()A. B. C.或 D.以上都不正确8.对于题目“一段抛物线与直线有唯一公共点,若c为整数,确定所有c的值,”甲的结果是,乙的结果是或4,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确9.已知关于x的二次函数,有如下结论:①函数没有最小值;②若,则关于x的方程一定有一个根为;③若,则函数有最大值,为-1;④若,,,则无论k为何值,直线与抛物线有且只有一个公共点.其中正确的有()A.②③ B.②③④ C.②④ D.①②④10.关于抛物线,给出不列结论:①当时,抛物线与直线没有交点;②若抛物线与x轴有两个交点,则其中一定有一个交点在点与之间;③若抛物线的顶点在以点,,为顶点的三角形区域内(包括边界),则.其中正确结论的序号是_____________.(写出所有正确结论的序号)11.已知抛物线,其中m为常数.设该抛物线的顶点为A,与y轴的交点为B,直线与直线AB相交于点P,则点P到x轴的距离的最小值为__________.12.已知点,在二次函数的图象上,设此二次函数图象在P和Q之间(包括P,Q两点)的部分为图象M.(1)当此二次函数图象的顶点在M上时,m的取值范围是_________.(2)当图象M对应函数值的最大值为9时,图象M上最低点的坐标是________.13.二次函数QUOTEy=ax2+bx+c交x轴于点QUOTEA(-1,0)和点QUOTEB(-3,0),交y轴于点QUOTEC(0,-3).(1)求二次函数的解析式;(2)如图1QUOTE1,点EQUOTEEE为抛物线的顶点,点QUOTET(0,t)为y轴负半轴上的一点,将抛物线绕点T旋转QUOTE180°´,得到新的抛物线,其中B,E旋转后的对应点分别记为QUOTEB'',,当四边形QUOTEBEB'E'的面积为12时,求t的值;(3)如图2,过点C作QUOTECD//x轴,交抛物线于另一点D.点M是直线CD上的一个动点,过点M作x轴的垂线,交抛物线于点P.QUOTEP..是否存在点M使QUOTE△PBC为直角三角形,若存在,请直接写出点M的坐标,若不存在,请说明理由.
答案以及解析1.答案:A解析:当时,如图(1),设AC与DE的交点为G,易知是等边三角形,,该函数图象所在抛物线开口向上,对称轴为y轴.当时,如图(2),设AB与DF的交点为H,,易知是等边三角形,,该函数图象所在抛物线开口向上,对称轴为直线.特殊地,当时,与完全重合,y的值最大,为.当或4时,.故选A.2.答案:D解析:抛物线的对称轴是直线,,.当时,,抛物线的顶点坐标为.点在抛物线上,,,拋物线的解析式为.当时,,抛物线开口向上,,.,,,抛物线过点.将代入,得,解得(舍去),,.3.答案:C解析:,抛物线交x轴于点,,交y轴于点.将抛物线向左或向右平移后,与x轴交于点A,B,与y轴交于点C,且的面积等于6,.由平移的性质可知,将抛物线向左或向右平移时,抛物线与x轴的两个交点之间的距离不变(关键点),,,点C的纵坐标为3或-3.设抛物线沿x轴向左平移的距离为个单位长度,则平移后抛物线的解析式为,当时,解得.当时,解得或(不合题意,舍去),共有3种平移方式,故选C.4.答案:C解析:,,由,得,代入上式,得:设,当取得最大值时,S也取得最大值当时,y取得最大值4S的最大值为故选:C.5.答案:C解析:①观察图象可知:QUOTEa>0,QUOTEb>0,QUOTEc<0,QUOTE∴abc<0,故①错误;②对称轴为直线QUOTEx=-1,QUOTEOA=3OB,可得QUOTEOA=2,,点QUOTEA(-3,0),点QUOTEB(1,0),当QUOTEx=1时,QUOTEy=0,即QUOTEa+b+c=0,QUOTE∴(a+c)2-b2=(a+b+c)(a+c-b)=0,故②③抛物线的对称轴为直线QUOTEx=-1,即QUOTE-b2a=-1,QUOTE∴b=2a,QUOTE∵a+b+c=0,QUOTE∴3a+c=0,QUOTE∴c=-3a,QUOTE∴3a+2c=-3a,QUOTE∵a>0,QUOTE∴3a+2c<0,故③正确;④当QUOTEx=-1时,函数有最小值QUOTEy=a-b+c,由QUOTEam2+bm+c≥a-b+c,可得QUOTEam2+bm+b≥a,QUOTE∴∴若m为任意实数,则QUOTEam2+b(m+1)≥a,故④正确;故选C.6.答案:C解析:点P在AB边上,如图,连接AC、BD交于点O,四边形ABCD是菱形,,,,,,,,,,和均为等边三角形,菱形ABCD的高为,设,则,,,,,,在中,,,,,当时,取得最大值;故选:C.7.答案:A解析:如图,抛物线的对称轴为直线,点是抛物线上的一点,解得该抛物线的解析式为,.的周长,且MN是定值,只需最小.如图①,作点M关于y轴对称的点,连接,与y轴的交点即为所求的点P.则.设直线的解析式为,则解得,故该直线的解析式为.当时,,即.同理,如图②,作点M关于x轴对称的点,连接,则与x轴的交点即为所求的点.如果点P在y轴上,则的周长;如果点P在x轴上,则的周长;点P在时,的周长最小.综上所述,符合条件的点P的坐标是.故选A.8.答案:D解析:对于抛物线,当时,;当时,.如图1,当L与l相切时,关于x的元二次方程,即方程有两个相等的实数根,,解得.如图2,当直线l恰好经过点时,.如图3,当直线l恰好经过点时,.故当时,L与l相交,且有唯一公共点.综上可知,满足条件的c的值为1,3,4,5,即甲、乙的结果合在一起也不正确.故选D.9.答案:B解析:,函数的图象开口向上,可知该函数有最小值,故①错误;将代入方程,得,故②正确;,,,函数的图象与x轴有两个交点,有最小值,最小值为0,故函数有最大值,为-1,故③正确;,,,,令,即,,无论k为何值,方程只有一个解,即直线与抛物线有且只有一个公共点,故④正确.故选B.10.答案:②③解析:令,整理,得,若抛物线与直线没有交点,则,解得,故结论①错误.抛物线与x轴有两个交点,,解得,则.对于,当时,;当时,,抛物线与x轴的一个交点位于点和之间,故结论②正确.,该抛物线的顶点坐标为,该抛物线的顶点位于直线上.抛物线的顶点在以点,,为顶点的三角形区域内(包括边界),如图,,解得,故结论③正确.综上所述,结论②③正确.11.答案:解析:,顶点A的坐标为.易知点B的坐标为,可设直线AB的解析式为.点在直线上,,解得,直线AB的解析式为,点P的坐标为.,点P到x轴的距离的最小值为.12.答案:(1)或(2)或解析:将点,分别代入,得,,,.假设二次函数的图象的顶点为D,则.(1)分情况讨论:①如图(1),当时,由点D在图象M上,得,解得,即时,点D在M上是恒成立的.②如图(2),当时,,即点Q在点D的右边,故若要点D在M上,则点P在点D的左边,.综上所述,m的取值范围是或.(2)分情况讨论:①如图(3),当时,图象开口向上,令,则,经检验,是原分式方程的根,图象M的最低点是.②如图(4),当时,图象开口向下,当点P的坐标为时,,则(与矛盾,舍去).③如图(5),当时,图象开口向下,当点D的坐标为时,,则,,最低点为点Q,此时,图象M的最低点是.综上所述,当时,图象M的最低点是;当时,图象M的最低点是.故答案为或.13.解析:(1)二次函数过点QUOTEA(-1,0),QUOTEB(-3,0),,QUOTE∴a-b+c=09a-3b+c=0c=-3,解得:QUOTEa=-1b=-4c=-3,该抛物线解析式为:QUOTEy=-x2-4x-3;(2)如图1QUOTE1,连接,QUOTEBB',延长BE,交y轴于点Q.由(1)得QUOTEy=-x2-4x-3=-(x+2)2+1QUOTE∴∴抛物线顶点QUOTEE(-2,1),设直线BE的解析式为QUOTEy=kx+b,QUOTE∵B(-3,0),QUOTEE(-2,1),QUOTE∴-3k+b=0-2k+b=1,解得:QUOTEk=1b=3,QUOTE∴∴直线BE的解析式为:QUOTEy=x+3,QUOTE∴Q(0,3),QUOTE∵∵抛物线绕点QUOTET(0,t)旋转QUOTE180°´,QUOTE∴TB=TB',QUOTETE=TE',QUOTE∴∴四边形QUOTEBEB'E'是平行四边形,QUOTE∴S△BET=14SQUOTE∵S△BET=S△BQT-QUOTE∴QT=6,QUOTE∴3-t=6,QUOTE∴t=-3;(3)设QUOTEP(x,-x2-4x-3),①当QUOTE∠BP1C=90°时,如图2QUOTE2,过点QUOTEP1作QUOTEP1E⊥y轴于点E,过点B作轴于点F,QUOTEP1E与BFQUOTEBF交于点,QUOTE∵∠BP1C=90°,QUOTE∴∠N1P1B+∠CQUOTE∴∠N1P1B=∠PQUOTE∴tan∠N1P1B=tan∠PQUOTE∴BN1P1NQUOTE∵BN1=-x2-4x-3,QUOTEP1N1=x+3,QUOTEP1E=-x,QUOTEEC=-x2-4x,QUOTE∴-x2-4x-3x+3=化简得:QUOTEx2+5x+5=0,解得:QUOTEx1=-5+524,(QUOTEx2=-5-5QUOTE∴M1(-5+5②当QUOTE∠BP2C=90°时,与①同理可得:QUOTEx2+5x+5=0,解得:(QUOTEx1=-5+52(舍去),QUOTEx2=-5-QUOTE∴M2(-5-5③当QUOTE∠P3BC=90°时,如图3,由QUOTE△BM3C是等腰直角三角形,QUOTE∴△N3BP3也是等腰直角三角形QUOTE∴N3B=N3PQUOTE∴-x2-4x-3=x+3,化简得:QUOTEx2+5x+6=0,解得:QUOTEx1=-2,(QUOTEx2=-3(舍去)QUOTE)),QUOTE∴M3点的坐标为QUOTE(-2,-3);④当QUOTE∠BCP4=90°
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度门卫人员服装及装备供应合同4篇
- 陶艺课程设计思路
- 音乐与影视同步课程设计
- 二零二五版办公大楼智能化会议系统建设与维护协议2篇
- 2024年心理咨询师之心理咨询师基础知识题库带答案(轻巧夺冠)
- 2025年度个人增强现实技术入股协议3篇
- 造价课程设计江苏版
- 年度玻璃用助剂市场分析及竞争策略分析报告
- 年度自动造型线产业分析报告
- 专项施工方案的审核人
- 2024-2030年中国海泡石产业运行形势及投资规模研究报告
- 动物医学类专业生涯发展展示
- 2024年同等学力申硕英语考试真题
- 消除“艾梅乙”医疗歧视-从我做起
- 非遗文化走进数字展厅+大数据与互联网系创业计划书
- 科普知识进社区活动总结与反思
- 现金日记账模板(带公式)
- 消化内科专科监测指标汇总分析
- 混凝土结构工程施工质量验收规范
- 肝性脑病患者的护理措施课件
- 三字经全文带拼音完整版可打印
评论
0/150
提交评论