2024届四川省乐山市第七中学数学八年级第二学期期末质量跟踪监视模拟试题含解析_第1页
2024届四川省乐山市第七中学数学八年级第二学期期末质量跟踪监视模拟试题含解析_第2页
2024届四川省乐山市第七中学数学八年级第二学期期末质量跟踪监视模拟试题含解析_第3页
2024届四川省乐山市第七中学数学八年级第二学期期末质量跟踪监视模拟试题含解析_第4页
2024届四川省乐山市第七中学数学八年级第二学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四川省乐山市第七中学数学八年级第二学期期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下图是某同学在沙滩上用石子摆成的小房子.观察图形的变化规律,第6个小房子用的石子数量为()A.87 B.77 C.70 D.602.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A.1,2,3 B.4,6,8 C.6,8,10 D.5,5,43.为提高课堂效率,引导学生积极参与课堂教学,鼓励学生大胆发言,勇于发表自己的观点促进自主前提下的小组合作学习,张老师调查统计了一节课学生回答问题的次数(如图所示)这次调查统计的数据的众数和中位数分别是()A.众数2,中位数3 B.众数2,中位数2.5C.众数3,中位数2 D.众数4,中位数34.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点的坐标表示正确的是A.(5,30) B.(8,10) C.(9,10) D.(10,10)5.如图,四边形ABCD是正方形,点E、F分别在AD、CD上,AF、BE相交于点G,且AF=BE,则下列结论不正确的是:()A.AF⊥BE B.BG=GF C.AE=DF D.∠EBC=∠AFD6.下列函数的图象经过,且随的增大而减小的是()A. B. C. D.7.数据3,2,0,1,的方差等于()A.0 B.1 C.2 D.38.使代数式的值不小于代数式的值,则应为(

)A.>17 B.≥17 C.<17 D.≥179.下列调查的样本所选取方式,最具有代表性的是()A.在青少年中调查年度最受欢迎的男歌手B.为了解班上学生的睡眠时间,调查班上学号为双号的学生的睡眠时间C.为了解你所在学校的学生每天的上网时间,对八年级的同学进行调查D.对某市的出租车司机进行体检,以此反映该市市民的健康状况10.下列等式成立的是()A. B. C. D.二、填空题(每小题3分,共24分)11.已知直角三角形中,分别以为边作三个正方形,其面积分别为,则__________(填“”,“”或“”)12.观察:①,②,③,…,请你根据以上各式呈现的规律,写出第6个等式:__________.13.如图,在直角坐标系中,正方形OABC顶点B的坐标为(6,6),直线CD交直线OA于点D,直线OE交线段AB于点E,且CD⊥OE,垂足为点F,若图中阴影部分的面积是正方形OABC的面积的,则△OFC的周长为______.14.一次函数y=kx+b(k,b是常数,k≠0)图象如图所示,则不等式kx+b>0的解集是_____.15.已知一个凸多边形的内角和是它的外角和的3倍,那么这个凸多边形的边数等于_________.16.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,BD⊥AD,AD=6,AB=10,则△AOB的面积为_________________17.正方形的对角线长为,则它的边长为_________。18.在开展“全民阅读”活动中,某校为了解全校1500名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1500名学生一周的课外阅读时间不少于7小时的人数是_____.三、解答题(共66分)19.(10分)某校为了加强学生的安全意识,组织学生参加安全知识竞赛,并从中抽取了部分学生的成绩(得分均为整数,满分100分)进行统计,绘制了两幅尚不完整的统计图如图所示,根据统计图中的信息解答下列问题:(1)若组的频数比组小,则频数分布直方图中________,________;(2)扇形统计图中________,并补全频数分布直方图;(3)若成绩在分以上为优秀,全校共有名学生,请估计成绩优秀的学生有多少名?20.(6分)如图,AC是正方形ABCD的对角线,点O是AC的中点,点Q是AB上一点,连接CQ,DP⊥CQ于点E,交BC于点P,连接OP,OQ;求证:(1)△BCQ≌△CDP;(2)OP=OQ.21.(6分)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,1;2班:70,80,80,80,60,90,90,90,1,90;3班:90,60,70,80,80,80,80,90,1,1.整理数据:分数人数班级6070809011班016212班11313班11422分析数据:平均数中位数众数1班8380802班833班8080根据以上信息回答下列问题:(1)请直接写出表格中的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?22.(8分)如图,等腰直角三角形AEF的顶点E在等腰直角三角形ABC的边BC上.AB的延长线交EF于D点,其中∠AEF=∠ABC=90°.(1)求证:(2)若E为BC的中点,求的值.23.(8分)又到一年丰收季,重庆外国语学校“国内中考、高考、国内保送、出国留学”捷报频传.作为准初三的初二年级学生希望抓紧暑期更好的提升自我.张同学采用随机抽样的方式对初二年级学生此次暑期生活的主要计划进行了问卷调查,并将调查结果按照“A社会实践类、B学习提高类、C游艺娱乐类、D其他”进行了分类统计,并绘制了如图1和如图2两幅不完整的统计图.(接受调查的每名同学只能在四类中选择其中一种类型,不可多选或不选.)请根据图中提供的信息完成以下问题.(1)扇形统计图中表示B类的扇形的圆心角是度,并补全条形统计图;(2)张同学已从被调查的同学中确定了甲、乙、丙、丁四名同学进行开学后的经验交流,并计划在这四人中选出两人的宝贵经验刊登在本班班刊上.请利用画树状图或列表的方法求出甲同学的经验刊登在班刊上的概率.24.(8分)我市晶泰星公司安排名工人生产甲、乙两种产品,每人每天生产件甲产品或件乙产品.根据市场行情测得,甲产品每件可获利元,乙产品每件可获利元.而实际生产中,生产乙产品需要数外支出一定的费用,经过核算,每生产件乙产品,当天每件乙产品平均荻利减少元,设每天安排人生产乙产品.(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲乙(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多元,试问:该企业每天生产甲、乙产品可获得总利润是多少元?25.(10分)某班进行了一次数学測验,将成绩绘制成频数分布表和频数直方图的一部分如下:成绩频数(人数)频率(1)在频数分布表中,的值为________,的值为________;(2)将频数直方图补充完整;(3)成绩在分以上(含)的学生人数占全班总人数的百分比是多少?26.(10分)如图,在梯形ABCD中,AD∥BC,AB=AD=DC,∠B=60.(1)求证:ABAC;(2)若DC=2,求梯形ABCD的面积.

参考答案一、选择题(每小题3分,共30分)1、D【解题分析】分析:要找这个小房子的规律,可以分为两部分来看:第一个屋顶是3,第二个屋顶是3.第三个屋顶是2.以此类推,第n个屋顶是2n-3.第一个下边是4.第二个下边是5.第三个下边是36.以此类推,第n个下边是(n+3)2个.两部分相加即可得出第n个小房子用的石子数是(n+3)2+2n-3=n2+4n,将n=7代入求值即可.详解:该小房子用的石子数可以分两部分找规律:屋顶:第一个是3,第二个是3,第三个是2,…,以此类推,第n个是2n-3;下边:第一个是4,第二个是5,第三个是36,…,以此类推,第n个是(n+3)2个.所以共有(n+3)2+2n-3=n2+4n.当n=6时,n2+4n=60,故选:D.点睛:本题考查了图形的变化类,分清楚每一个小房子所用的石子个数,主要培养学生的观察能力和空间想象能力.2、C【解题分析】

判断是否为直角三角形,只要验证较短两边长的平方和等于最长边的平方即可.【题目详解】A、12+22=5≠32,故不能组成直角三角形,错误;B、42+62≠82,故不能组成直角三角形,错误;C、62+82=102,故能组成直角三角形,正确;D、52+42≠52,故不能组成直角三角形,错误.故选:C.【题目点拨】本题主要考查勾股定理的逆定理,掌握勾股定理的逆定理是解题的关键.3、A【解题分析】

根据中位数、众数的概念分别求得这组数据的中位数、众数即可.【题目详解】∵2出现了12次,出现的次数最多,∴众数是2,∵共有6+12+10+8+4=40个数,∴中位数是第20、21个数的平均数,∴中位数是(3+3)÷2=3,故选A.【题目点拨】本题考查了中位数、众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.4、C【解题分析】

先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.【题目详解】如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2-16=9,OA=OD-AD=40-30=10,∴P(9,10);故选C.【题目点拨】此题考查了坐标确定位置,根据题意确定出DC=9,AO=10是解本题的关键.5、B【解题分析】

由四边形ABCD是正方形,可得AD=BA,∠D=∠BAE=90°,利用直角三角形全等的判定(HL)可得Rt△ABE≌Rt△DAF,可得出边角关系,对应选项逐一验证即可.【题目详解】∵四边形ABCD是正方形,∴AD=AB,∠D=∠BAE=90°,又AF=BE,∴Rt△ABE≌Rt△DAF(HL),∴∠ABE=∠DAF,∠AEB=∠DFA,AE=DF,因此C选项正确,又∵∠DAF+∠DFA=90°,∴∠DAF+∠AEB=90°,∴∠AGE=90°,即AF⊥BE,因此A选项正确,∵∠EBC+∠ABE=90°,∠ABE+∠AEB=90°,∠AEB=∠AFD,∴∠EBC=∠AFD,因此D选项正确,∵BE=AF,若BG=GF,则AG=GE,可得,∠DAF=45°,则AF应该为正方形的对角线,从图形来看,AF不是对角线,所以与题目矛盾,所以B选项错误,故选:B.【题目点拨】考查了正方形的性质,全等三角形的判定和性质,余角的定义,垂直的定义,熟记几何图形的概念,判定和性质定理是解题的关键,注意题目要求选不正确的.6、D【解题分析】

根据一次函数的性质,k<0,y随x的增大而减小,找出各选项中k值小于0的选项即可.再把点代入,符合的函数解析式即为答案.【题目详解】A.,当x=0时,y=0,图象不经过,不符合题意;B.,,当x=0时,y=-1,图象不经过,不符合题意;C.,k=2>0,随的增大而增大,不符合题意;D.y=-x+1,当x=0时,y=1,图象经过,k=-1<0,随的增大而减小【题目点拨】本题考查了一次函数图像的性质,判断函数图像是否经过点,把点的x坐标代入求y坐标,如果y值相等则函数图像经过点,如不相等则不经过,当k>o,y随的增大而增大,,当k<0,随的增大而减小.7、C【解题分析】

先计算这5个数据的平均数,再根据方差公式计算即可.【题目详解】解:这5个数的平均数=(3+2+0+1-1)÷5=1,所以这组数据的方差=.故选:C.【题目点拨】本题考查的是方差的计算,属于基础题型,熟练掌握方差的计算公式是解题的关键.8、B【解题分析】【分析】不小于就是大于或等于的意思,根据此可列出不等式,然后根据不等式的基本性质求出解.【题目详解】依题意得:≥解此不等式,得≥17故选:B【题目点拨】本题考核知识点:解一元一次不等式.解题关键点:熟记不等式的性质.9、B【解题分析】试题解析:A.只在青少年中调查不具有代表性,故本选项不符合题意;B.了解班上学生的睡眠时间.调查班上学号为双号的学生的睡眠时间,具有广泛性与代表性,故本选项符合题意;C.只向八年级的同学进行调查不具有代表性,故本选项不符合题意;D.反映该市市民的健康状况只对出租车司机调查不具有代表性,故本选项不符合题意.故选B.10、B【解题分析】

根据二次根式的加减、乘除运算法则以及二次根式的性质解答即可.【题目详解】解:A.不是同类二次根式,故A错误;B.,故B正确;C.,故B错误;D.,故D错误.故答案为B.【题目点拨】本题考查了二次根式的加减、乘除运算法则以及二次根式的性质,牢记并灵活运用运算法则和性质是解答本题的关键.二、填空题(每小题3分,共24分)11、【解题分析】

由勾股定理得出AC2+BC2=AB2,得出S1+S2=S3,可得出结果.【题目详解】解:∵∠ACB=90°,

∴AC2+BC2=AB2,

∴S1+S2=S3,故答案为:=.【题目点拨】本题考查了勾股定理、正方形面积的计算;熟练掌握勾股定理,由勾股定理得出正方形的面积关系是解决问题的关键.12、【解题分析】

第n个等式左边的第1个数为2n+1,根号下的数为n(n+1),利用完全平方公式得到第n个等式右边的式子为(n≥1的整数),直接利用已知数据得出数字变化规律,进而得出答案.【题目详解】解:∵①,

②,

③,……

∴第n个式子为:,

∴第6个等式为:

故答案为:.【题目点拨】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.13、3+2【解题分析】

证明△COD≌△OAE,推理出△OCF面积=四边形FDAE面积=2÷2=3,设OF=x,FC=y,则xy=2,x2+y2=1,所以(x+y)2=x2+y2+2xy=30,从而可得x+y的值,则△OFC周长可求.【题目详解】∵正方形OABC顶点B的坐标为(3,3),∴正方形的面积为1.所以阴影部分面积为1×=2.∵四边形AOCB是正方形,∴∠AOC=90°,即∠COE+∠AOE=90°,又∵CD⊥OE,∴∠CFO=90°∴∠OCF+∠COF=90°,∴∠OCD=∠AOE在△COD和△OAE中∴△COD≌△OAE(AAS).∴△COD面积=△OAE面积.∴△OCF面积=四边形FDAE面积=2÷2=3.设OF=x,FC=y,则xy=2,x2+y2=1,所以(x+y)2=x2+y2+2xy=30.所以x+y=2.所以△OFC的周长为3+2.故答案为3+2.【题目点拨】本题主要考查了正方形的性质、全等三角形的判定和性质,解题的关键是推理出两个阴影部分面积相等,得到△OFC两直角边的平方和、乘积,运用完全平方公式求解出OF+FC值.14、x>-2【解题分析】试题解析:根据图象可知:当x>-2时,一次函数y=kx+b的图象在x轴的上方.即kx+b>0.考点:一次函数与一元一次不等式.15、1【解题分析】

根据多边形的内角和定理,多边形的内角和等于(n-2)•110°,外角和等于360°,然后列方程求解即可.【题目详解】解:设这个凸多边形的边数是n,根据题意得

(n-2)•110°=3×360°,

解得n=1.

故这个凸多边形的边数是1.

故答案为:1.【题目点拨】本题主要考查了多边形的内角和公式与外角和定理,根据题意列出方程是解题的关键.16、12【解题分析】∵BD⊥AD,AD=6,AB=10,,∴.∵四边形ABCD是平行四边形,17、4【解题分析】

由正方形的性质求出边长,即可得出周长.【题目详解】如图所示:∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠B=90°,∴AB+BC=AC,∴AB==4,故答案为:4【题目点拨】此题考查正方形的性质,解题关键在于利用勾股定理18、1【解题分析】

用所有学生数乘以课外阅读时间不少于7小时的人数所占的百分比即可.【题目详解】解:该校1500名学生一周的课外阅读时间不少于7小时的人数是1500×=1人,故答案为1.点评:本题考查了用样本估计总体的知识,解题的关键是求得样本中不少于7小时的人数所占的百分比.三、解答题(共66分)19、(1)16,40;(2),见解析;(3)估计成绩优秀的学生有470名.【解题分析】

(1)根据若A组的频数比B组小24,且已知两个组的百分比,据此即可求得总人数,然后根据百分比的意义求得a、b的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数乘以对应的百分比即可求解.【题目详解】(1)学生总人数:(人)则,(2),组的人数是:(人),补全条形统计图如图(3)样本、两组的百分数的和为,∴(名)答:估计成绩优秀的学生有470名.【题目点拨】本题考查的是频数分布直方图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.直方图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体的思想.20、(1)见解析;(2)见解析.【解题分析】

(1)根据正方形的性质和DP⊥CQ于点E可以得到证明△BCQ≌△CDP的全等条件;(2)根据(1)得到BQ=PC,然后连接OB,根据正方形的性质可以得到证明△BOQ≌△COP的全等条件,然后利用全等三角形的性质就可以解决题目的问题.【题目详解】证明:(1)∵四边形ABCD是正方形,∴∠B=∠PCD=90°,BC=CD,∴∠2+∠3=90°,又∵DP⊥CQ,∴∠2+∠1=90°,∴∠1=∠3,在△BCQ和△CDP中,∴△BCQ≌△CDP;(2)连接OB,由(1)△BCQ≌△CDP可知:BQ=PC,∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵点O是AC中点,∴BO=AC=CO,∠4=∠ABC=45°=∠PCO,在△BOQ和△COP中,∴△BOQ≌△COP,∴OQ=OP.【题目点拨】解答本题要充分利用正方形的特殊性质.注意在正方形中的特殊三角形的应用,利用它们构造证明全等三角形的条件,然后通过全等三角形的性质解决问题.21、(1),,;(2)2班成绩比较好;理由见解析;(3)估计需要准备76张奖状.【解题分析】

(1)根据众数和中位数的概念求解可得;(2)分别从平均数、众数和中位数三个方面比较大小即可得;(3)利用样本估计总体思想求解可得.【题目详解】(1)由题意知,,2班成绩重新排列为60,70,80,80,80,90,90,90,90,1,∴;(2)从平均数上看三个班都一样;从中位数看,1班和3班一样是80,2班最高是85;从众数上看,1班和3班都是80,2班是90;综上所述,2班成绩比较好;(3)(张),答:估计需要准备76张奖状.【题目点拨】本题主要考查众数、平均数、中位数,掌握众数、平均数、中位数的定义及其意义是解题的关键.22、(1)见解析;(2)【解题分析】

(1)由△AEF、△ABC是等腰直角三角形,易证得△FAD∽△CAE,然后由相似三角形的对应边成比例,可得,又由等腰直角三角形的性质,可得AF=AE,即可证得;(2)首先设BE=a,由射影定理,可求得DB的长,继而可求得DA的长,即可求得答案.【题目详解】(1)证明:∵△AEF、△ABC是等腰直角三角形,∴∠EAF=∠BAC=45°,∠F=∠C=45°,∴∠FAD=∠CAE,∴△FAD∽△CAE,∴,∵∠AEF=90°,AE=EF,∴AF=AE,∴;(2)设BE=a,∵E为BC的中点,∴EC=BE=a,AB=BC=2a,∵∠AEF=∠ABC=90°,∴BE=AB⋅DB,∴DB=,∵DA=DB+AB,∴DA=,∴=.【题目点拨】此题考查相似三角形的判定与性质,等腰直角三角形,解题关键在于证明△FAD∽△CAE23、(1)144(2)【解题分析】

(1)先根据A类型人数及其所占百分比求得总人数,继而根据各类型人数之和等于总人数求得B的人数,再用360°乘以B类型人数所占比例可得;(2)列表得出所有等可能结果,从中找打符合条件的结果数,再利用概率公式可得答案.【题目详解】解:(1)∵被调查的人数为45÷30%=150人,∴B等级人数为150﹣(45+15+30)=60人,则扇形统计图中表示B类的扇形的圆心角是360°×=144°,补全图形如下:故答案为144;(2)列表如下:甲乙丙丁甲(甲,乙)(甲,丙)(甲,丁)乙(乙,甲)(乙,丙)(乙,丁)丙(丙,甲)(丙,乙)(丙,丁)丁(丁,甲)(丁,乙)(丁,丙)由树状图(或表格)可知,所有等可能的结果共12种,其中包含甲同学的有6种,所以P(甲同学的经验刊登在班刊上的概率)=.【题目点拨】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图.24、(1);;;(2)该企业每天生产甲、乙产品可获得总利润是元.【解题分析】

(1)设每天安排x人生产乙

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论