版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第五章抛体运动5.1曲线运动 -1-5.2运动的合成与分解 -5-5.3实验:探究平抛运动的特点 -16-5.4抛体运动的规律 -23-专题抛体运动规律的应用 -31-5.1曲线运动一、曲线运动的速度方向1.曲线运动运动轨迹是曲线的运动称为曲线运动。[特别提示]数学中的切线不考虑方向,但物理学中的切线具有方向。如图所示,若质点沿曲线从A运动到B,则质点在a点的速度方向(切线方向)为v1的方向,若从B运动到A,则质点在a点的速度方向(切线方向)为v2的方向。2.速度的方向质点在某一点的速度方向,沿曲线在这一点的切线方向。3.运动性质由于曲线运动中速度方向是变化的,所以曲线运动是变速运动。二、物体做曲线运动的条件1.当物体所受合力的方向与它的速度方向不在同一直线上时,物体做曲线运动。2.当物体加速度的方向与速度的方向不在同一直线上时,物体做曲线运动。曲线运动的速度方向“丢沙包”游戏曾经风靡南北,是一个经典的群体性游戏,极受孩子们欢迎。讨论:(1)丢出的沙包在空中做什么运动?(2)沙包运动的速度在不同时刻有什么特点?曲线运动一定是变速运动吗?提示:(1)曲线运动。(2)速度方向时刻发生变化,都沿该时刻曲线的切线方向;曲线运动一定是变速运动。1.曲线运动的速度方向:曲线运动中某时刻的速度方向就是该相应位置点的切线方向。[特别提示]曲线的切线如图所示,过曲线上的A、B两点作直线,这条直线叫作曲线的割线。设想B点逐渐沿曲线向A点移动,这条割线的位置也就不断变化。当B点非常非常接近A点时,这条割线就叫作曲线在A点的切线。2.曲线运动是变速运动:由于做曲线运动的物体的速度方向时刻在变化,不管速度大小是否变化,因为速度是矢量,物体的速度时刻在变化,所以曲线运动一定是变速运动,一定有加速度,但加速度不一定变化。3.曲线运动的分类:(1)匀变速曲线运动:加速度恒定的曲线运动,即物体在恒力作用下的曲线运动。(2)变加速曲线运动:加速度不断变化的曲线运动,即物体在变力作用下的曲线运动。[特别提示]曲线运动一定是变速运动,但变速运动不一定是曲线运动。【例1】翻滚过山车是大型游乐园里的一种比较刺激的娱乐项目。如图所示,翻滚过山车(可看成质点)从高处冲下,过M点时速度方向如图所示,在圆形轨道内经过A、B、C三点。下列说法中正确的是()A.过A点时的速度方向沿AB方向B.过B点时的速度方向沿水平方向C.过A、C两点时的速度方向相同D.在圆形轨道上与过M点时速度方向相同的点在AB段上[思路点拨]过山车做曲线运动,在任一位置的速度方向沿轨迹上该点的切线方向。B[翻滚过山车经过A、B、C三点的速度方向如图所示,由图可判断出B正确,A、C错误;翻滚过山车在圆形轨道AB段上的速度方向偏向左上方,不可能与过M点时速度方向相同,D错误。]在确定某点的速度方向时,要弄清两点:一是物体沿轨迹的运动方向,二是轨迹在该点的切线方向。然后两方面结合确定该点的速度方向。物体做曲线运动的条件提示:物体所受合外力的方向与它的速度方向不在同一直线上。如图所示,将圆弧形滑轨放在铺了一层白纸的平滑桌面上,使其底端与桌面相切,让钢球从圆弧形滑轨滚下获得一定的初速度。为便于观察,在离开滑轨处沿钢球运动方向用直尺在白纸上画一直线。图甲中将条形磁铁沿直线放置;图乙中将条形磁铁放在钢球运动路线的旁边。甲乙(1)图甲中钢球从滑轨上滚下时,观察钢球做什么运动,钢球的运动方向与所受磁铁吸引力方向有什么关系?(2)图乙中钢球从滑轨上滚下时,观察钢球做什么运动,钢球的运动方向与所受磁铁吸引力方向有什么关系?提示:(1)钢球做加速直线运动,钢球的运动方向与所受磁铁吸引力方向相同。(2)钢球做曲线运动,钢球的运动方向与所受磁铁吸引力方向不在同一条直线上。1.物体做曲线运动的条件(1)动力学条件是合力方向与速度方向不共线。这包含三个层次的内容:①初速度不为零;②合力不为零;③合力方向与速度方向不共线。(2)运动学条件:加速度方向与速度方向不共线。2.曲线运动的轨迹与速度、合力的关系做曲线运动的物体的轨迹与速度方向相切,夹在速度方向与合力方向之间。并向合力方向弯曲,也就是合力指向运动轨迹的凹侧。[特别提示]速度方向、合力方向及运动轨迹三者的关系1根据速度和合力的方向,可定性画出物体的运动轨迹,如图甲所示。2根据物体的运动轨迹,可确定物体在某点的速度方向,也可定性画出受力方向,如图乙所示。3.合外力与速率变化的关系若合力方向与速度方向的夹角为α,则:甲乙丙【例2】质点沿如图所示的轨迹从A点运动到B点,已知其速度逐渐减小,图中能正确表示质点在C点处受力的是()ABCDC[根据曲线运动中合力F应指向轨迹的“凹侧”,故A、D错误;在B项中,F的方向与v的方向成锐角,质点从A到B加速,故B错误;在C项中,F的方向与v的方向成钝角,质点从A到B减速,故C正确。][易错分析]力和运动轨迹关系的三点提醒(1)物体的运动轨迹由初速度、合外力两个因素决定,轨迹在合外力与速度之间且与速度相切。(2)物体在恒力作用下做曲线运动时,速度的方向将越来越接近力的方向,但不会与力的方向相同。(3)合力方向与速度方向成锐角时,物体做加速曲线运动;成钝角时,物体做减速曲线运动。5.2运动的合成与分解一、一个平面运动的实例1.蜡块的位置:如图所示,蜡块沿玻璃管匀速上升的速度设为vy,玻璃管向右匀速移动的速度设为vx,从蜡块开始运动的时刻开始计时,在某时刻t,蜡块的位置P可以用它的x、y两个坐标表示:x=vxt,y=vyt。注意:蜡块向右上方的运动可看成由沿玻璃管向上的运动和水平向右的运动共同构成的。2.蜡块运动的速度:大小v=eq\r(v\o\al(2,x)+v\o\al(2,y)),方向满足tanθ=eq\f(vy,vx)。3.蜡块运动的轨迹:y=eq\f(vy,vx)x,是一条过原点的直线。二、运动的合成与分解1.合运动与分运动如果物体同时参与了几个运动,那么物体实际发生的运动就是合运动,参与的几个运动就是分运动。2.运动的合成与分解:已知分运动求合运动的过程,叫运动的合成;已知合运动求分运动的过程,叫运动的分解。3.运动的合成与分解实质是对运动的位移、速度和加速度的合成和分解,遵循矢量运算法则。一个平面运动的实例(蜡块运动的分析)一条宽阔的大河上有两个码头A、B隔河相对。小明驾着小船从这边的码头A出发,将一批货物运送到对岸的码头B。他驾船时始终保持船头指向与河岸垂直,但小明惊奇地发现小船行驶的路线并不与河岸垂直,而是朝河的下游方向偏移。怎样来研究这种运动呢?提示:小船的实际运动为小船自身的运动与沿河流方向运动的合运动。1.研究蜡块的运动2.结论蜡块向右上方的运动可看成由沿玻璃管向上的运动和水平向右的运动共同构成。[特别提示]1vx、vy都是常量,v=eq\r(v\o\al(2,x)+v\o\al(2,y))也是常量,说明蜡块的速度大小是一定的;tanθ=eq\f(vy,vx)也是一常量,说明蜡块的速度方向是一定的。综上可知蜡块做的是匀速直线运动。2根据tanα=eq\f(y,x),也能判断蜡块的运动是直线运动,因为tanα=eq\f(y,x)=eq\f(vy,vx),是定值,也就是说,位移的方向一直不变,所以蜡块做直线运动。【例1】(多选)质量为m=2kg的物体在光滑的水平面上运动,在水平面内建立xOy坐标系,t=0时物体位于坐标系的原点O。物体在x轴和y轴方向的分速度vx、vy随时间t变化的图线如图甲、乙所示。则()A.t=0时,物体速度的大小为3m/sB.t=8s时,物体速度的大小为4m/sC.t=8s时,物体速度的方向与x轴正方向的夹角为37°D.t=8s时,物体的位置坐标为(24m,16m)AD[由题图可知,t=0时刻,vx=3m/s,vy=0,所以t=0时刻,物体的速度大小v0=3m/s,A正确;t=8s时,vx=3m/s,vy=4m/s,物体的速度大小v=eq\r(v\o\al(2,x)+v\o\al(2,y))=5m/s,B错误;t=8s时,设速度方向与x轴正方向的夹角为α,则tanα=eq\f(vy,vx)=eq\f(4,3),得α=53°,C错误;t=8s时,物体的位置坐标x=vxt=24m,y=eq\f(1,2)ayt2=16m,所以t=8s时,物体的位置坐标为(24m,16m),D正确。]运动的合成与分解因蜡块随玻璃管沿水平方向匀加速运动,蜡块沿竖直方向上匀速运动,蜡块所受合外力与合速度有夹角,故其轨迹不是直线。如图所示,跳伞运动员打开降落伞后正从高空下落。(1)跳伞员在无风时竖直匀速下落,有风时运动员的实际运动轨迹还竖直向下吗?竖直方向的运动是跳伞员的合运动还是分运动?(2)已知跳伞员的两个分运动速度,怎样求跳伞员的合速度?提示:(1)有风时跳伞员不沿竖直方向向下运动。无风时跳伞员竖直匀速下落,有风时,跳伞员一方面竖直匀速下落,一方面在风力作用下水平运动。因此,竖直匀速下落的运动是跳伞员的分运动。(2)应用矢量运算法则求合速度。1.合运动与分运动(1)如果物体同时参与了几个运动,那么物体实际发生的运动就是合运动,参与的几个运动就是分运动。(2)物体实际运动的位移、速度、加速度就是它的合位移、合速度、合加速度,而分运动的位移、速度、加速度就是它的分位移、分速度、分加速度。2.合运动与分运动的四个特性等时性各分运动与合运动同时发生和结束,时间相同等效性各分运动的共同效果与合运动的效果相同同体性各分运动与合运动是同一物体的运动独立性各分运动之间互不相干,彼此独立,互不影响3.运动的合成与分解(1)运动的合成与分解:已知分运动求合运动,叫运动的合成;已知合运动求分运动,叫运动的分解。(2)运动合成与分解的法则:合成和分解的对象是位移、速度、加速度,这些量都是矢量,遵循的是平行四边形定则。[特别提示]合运动与分运动有等时、独立、等效、同体四个特性,最重要的是等时性,时间像桥梁一样联系着分运动和合运动。4.确定合运动性质的方法分析两个直线运动的合运动的性质时,应先根据平行四边形定则,确定合运动的合初速度v0和合加速度a,然后进行判断:(1)判断是否做匀变速运动:若a恒定,物体做匀变速运动;若a变化,物体做变加速运动。(2)判断轨迹曲直:若a与v0共线,则做直线运动;若a与v0不共线,则做曲线运动。(3)互成角度的两个直线运动的合运动性质和轨迹的判断分运动合运动矢量图条件两个匀速直线运动匀速直线运动a=0一个匀速直线运动和一个匀变速直线运动匀变速曲线运动a与v成α角两个初速度为零的匀加速直线运动初速度为零的匀加速直线运动v0=0两个初速度不为零的匀加速直线运动匀变速直线运动a与v方向相同匀变速曲线运动a与v成α角【例2】竖直放置的两端封闭的玻璃管中注满清水,内有一个蜡块能在水中以0.1m/s的速度匀速上浮。在蜡块从玻璃管的下端匀速上浮的同时,使玻璃管水平向右匀速运动,测得蜡块实际运动方向与水平方向成30°角,如图所示。若玻璃管的长度为1.0m,在蜡块从底端上升到顶端的过程中,下列关于玻璃管水平方向的移动速度和水平运动的距离计算结果正确的是()A.0.1m/s,1.73m B.0.173m/s,1.0mC.0.173m/s,1.73m D.0.1m/s,1.0mC[由题图知竖直位移与水平位移之间的关系为tan30°=eq\f(y,x)由分运动具有独立性和等时性得:y=vyt、x=vxt联立解得:x=1.73m,vx=0.173m/s。故C项正确。]上例中,若将玻璃管水平向右匀速运动改为从静止开始匀加速运动;将蜡块实际运动方向与水平方向成30°角改为蜡块最终位移方向与水平方向成45°角,其他条件不变,则玻璃管水平方向的加速度多大?提示:由tan45°=eq\f(y,x),则x=1.0m,由x=eq\f(1,2)at2,y=vyt得t=10s,a=0.02m/s2。“三步走”求解合运动或分运动(1)根据题意确定物体的合运动与分运动。(2)根据平行四边形定则作出矢量合成或分解的平行四边形。(3)根据所画图形求解合运动或分运动的参量,求解时可以用勾股定理、三角函数、三角形相似等数学知识。运动的合成与分解的应用生活中常遇到这样两种实际问题:甲1.如图所示,小船渡河问题中,小船渡河参与了哪两个运动?怎样过河时间最短?怎样过河位移最短?提示:小船渡河参与了相对于静水的运动和随河水漂流的运动;船头垂直河岸渡河时时间最短,合位移垂直河岸时位移最短。2.如图乙所示,绳联物体问题中,如何判断合速度和分速度?速度怎样分解?乙提示:物体的实际运动是合运动;将物体的实际速度分解为垂直于绳(杆)和沿绳(杆)的两个分量。1.运动的合成与分解的应用解题思路(1)确定物体的合运动(实际发生的运动)与分运动。(2)画出矢量(速度、位移或加速度)合成或分解的平行四边形。(3)应用运动学公式分析同一运动(合运动或某一分运动)中的位移、速度、加速度等物理量之间的关系,应用几何知识分析合矢量与分矢量之间的关系。2.两种常见物理模型(1)“小船渡河”模型①模型特点小船参与的两个分运动:小船在河流中实际的运动(站在岸上的观察者看到的运动)可视为船同时参与了这样两个分运动:(ⅰ)船相对水的运动(即船在静水中的运动),它的方向与船身的指向相同。(ⅱ)船随水漂流的运动(即速度等于水的流速),它的方向与河岸平行。船在流水中实际的运动(合运动)是上述两个分运动的合成。②两类最值问题(ⅰ)渡河时间最短问题:若要渡河时间最短,由于水流速度始终沿河道方向,不能提供指向河对岸的分速度。因此,只要使船头垂直于河岸航行即可。由图可知,t短=eq\f(d,v船),此时船渡河的位移x=eq\f(d,sinθ),位移方向满足tanθ=eq\f(v船,v水)。(ⅱ)渡河位移最短问题情况一:v水<v船最短的位移为河宽d,此时渡河所用时间t=eq\f(d,v船sinθ),船头与上游河岸夹角θ满足v船cosθ=v水,如图甲所示。甲情况二:v水>v船如图乙所示,以v水矢量的末端为圆心,以v船的大小为半径作圆,当合速度的方向与圆相切时,合速度的方向与河岸的夹角最大(设为α),此时航程最短。由图可知sinα=eq\f(v船,v水),最短航程为x=eq\f(d,sinα)=eq\f(v水,v船)d。此时船头指向应与上游河岸成θ′角,且cosθ′=eq\f(v船,v水)。乙【例3】一小船渡河,河宽d=180m,水流速度为v1=2.5m/s。船在静水中的速度为v2=5m/s,求:(1)小船渡河的最短时间为多少?此时位移多大?(2)欲使船渡河的航程最短,船头应朝什么方向?用多长时间?[解析](1)欲使船在最短时间内渡河,船头应朝垂直河岸方向。当船头垂直河岸时,如图甲所示,甲合速度为倾斜方向,垂直分速度为v2=5m/s。t=eq\f(d,v⊥)=eq\f(d,v2)=eq\f(180,5)s=36sv合=eq\r(v\o\al(2,1)+v\o\al(2,2))=eq\f(5,2)eq\r(5)m/sx=v合t=90eq\r(5)m。(2)欲使船渡河的航程最短,船的合运动方向应垂直河岸。船头应朝上游与河岸成某一角度β。如图乙所示,由v2sinα=v1得α=30°。所以当船头朝上游与河岸成一定角度β=60°时航程最短。乙x=d=180mt=eq\f(d,v′⊥)=eq\f(d,v2cos30°)=eq\f(180,\f(5,2)\r(3))s=24eq\r(3)s。[答案](1)36s90eq\r(5)m(2)偏向上游与河岸成60°角24eq\r(3)s[解题误区]1.小船渡河时间最短与位移最短是两种不同的运动情境,时间最短时,位移不是最短。2.求渡河的最小位移时,要先弄清v船与v水的大小关系,不要盲目地认为最小渡河位移一定等于河的宽度。3.渡河时间与船随水漂流速度的大小无关,只要船头指向与河岸垂直,渡河时间即为最短。(2)“关联速度”模型①“关联”速度关联体一般是两个或两个以上由轻绳或轻杆联系在一起,或直接挤压在一起的物体,它们的运动简称为关联运动。一般情况下,在运动过程中,相互关联的两个物体不是都沿绳或杆运动的,即二者的速度通常不同,但却有某种联系,我们称二者的速度为“关联”速度。②“关联”速度分解的步骤(ⅰ)确定合运动的方向:物体实际运动的方向就是合运动的方向,即合速度的方向。(ⅱ)确定合运动的两个效果。eq\o(\a\al(用轻绳或可自由转动的,轻杆连接的物体的问题))→eq\b\lc\{\rc\(\a\vs4\al\co1(效果1:沿绳或杆方向的运动,效果2:垂直绳或杆方向的运动))相互接触的物体的问题→eq\b\lc\{\rc\(\a\vs4\al\co1(效果1:垂直接触面的运动,效果2:沿接触面的运动))(ⅲ)画出合运动与分运动的平行四边形,确定它们的大小关系。③常见的速度分解模型甲乙丙丁【例4】如图所示,以速度v沿竖直杆匀速下滑的物体A用轻绳通过定滑轮拉物体B,当绳与水平面夹角为θ时,物体B的速度为()A.vB.eq\f(v,sinθ)C.vcosθD.vsinθD[将A的速度分解为沿绳子方向和垂直于绳子方向,如图所示,根据平行四边形定则得,vB=vsinθ,故D正确。]上例中,若物体B以速度v向左匀速运动,则物体A做什么运动?提示:vA′=eq\f(v,sinθ)由于θ变小,故vA′变大,故物体A向上做加速运动。5.3实验:探究平抛运动的特点一、平抛运动1.抛体运动:以一定的速度将物体抛出,在空气阻力可以忽略的情况下,物体只受重力的作用,这时的运动叫作抛体运动。2.平抛运动(1)概念:如果抛体运动的初速度是沿水平方向的,物体所做的运动叫作平抛运动。(2)条件:物体具有水平方向的初速度且运动过程中只受到重力的作用。二、探究平抛运动的特点1.实验思路(1)提出问题平抛运动是曲线运动,速度和位移的大小和方向时刻在发生变化。这个复杂的曲线运动有什么规律呢?能否分解为两个简单的直线运动?(2)科学猜想由于物体是沿水平方向抛出的,在运动过程中只受重力作用。因此平抛运动可能是水平方向和竖直方向分运动的合成。那么只要研究出这两个分运动的特点,平抛运动的规律就清楚了。2.进行实验方案一:利用频闪照相法探究平抛运动的特点(1)实验目的①探究平抛运动的轨迹是一条什么曲线。②探究平抛运动水平方向和竖直方向是什么运动。(2)实验原理数码相机每秒拍下小球做平抛运动时的十几帧或几十帧照片,将照片上不同时刻的小球的位置连成平滑曲线,便得到小球的运动轨迹,如图所示,由于相邻两帧照片间的时间间隔相等,只要测出相邻两帧照片上小球位置间的水平距离和竖直距离,就很容易判断平抛运动在水平方向和竖直方向的运动特点。(3)数据处理①建立以抛出点为坐标原点,以小球水平抛出时的初速度方向为x轴正方向,以竖直向下为y轴正方向的直角坐标系。②测出相邻两帧照片中小球移动的水平距离和竖直距离。③根据水平位移和竖直位移随时间变化的具体数据分析小球水平方向分运动和竖直方向分运动的特点。(4)结果分析水平方向的分运动是匀速直线运动,竖直方向的分运动是匀加速直线运动。方案二:利用描迹法探究平抛运动的特点(1)实验设计实验装置如图所示。小钢球从斜槽上滚下,从水平槽飞出后做平抛运动。每次都使小钢球在斜槽上同一位置滚下,小钢球在空中做平抛运动的轨迹就是一定的,设法用铅笔描出小钢球经过的位置。通过多次实验,在竖直坐标纸上记录小钢球所经过的多个位置,用平滑的曲线连起来就得到小钢球做平抛运动的轨迹。(2)实验器材和步骤①实验器材小钢球、斜槽轨道、木板及竖直固定支架、坐标纸、图钉、重垂线、铅笔、三角板、刻度尺等。②实验步骤a.安装、调整斜槽将斜槽固定在实验桌上,使其末端伸出桌面,斜槽末端的切线水平,如图所示。b.调整木板并确定坐标原点用图钉将坐标纸固定在木板的左上角,把木板调整到竖直位置,使板面与小钢球运动轨迹所在的平面平行且靠近。把小钢球放在槽口(斜槽末端)处,用铅笔记下小钢球在槽口时球心在坐标纸上的水平投影点O,O点即坐标原点。利用重垂线画出过坐标原点的竖直线作为y轴,在水平方向建立x轴。c.描点使小钢球从斜槽上某一位置由静止滚下,小钢球从斜槽末端飞出,先用眼睛粗略确定做平抛运动的小钢球在某一x值处的y值,然后让小钢球从斜槽上同一位置由静止滚下,移动笔尖在坐标纸上的位置,当小球恰好与笔尖正碰时,用铅笔在坐标纸上描出代表小钢球通过位置的点。重复几次实验,在坐标纸上描出一系列代表小钢球通过位置的点。d.描绘出平抛运动的轨迹取下坐标纸,将坐标纸上记下的一系列点用平滑曲线连接起来,即可得到小钢球做平抛运动的轨迹。[特别提示]斜槽的粗糙程度对该实验没有影响,因为每次钢球从同一高度滚下,所受摩擦力相同,到达槽口的速度相同,因此轨迹依然重合,不影响实验结果。(3)注意事项①应保持斜槽末端的切线水平,钉有坐标纸的木板竖直,并使小钢球的运动靠近坐标纸但不接触。②小钢球每次必须从斜槽上同一位置无初速度滚下,在斜槽上释放小钢球的高度应适当,使小钢球以合适的水平初速度抛出,其轨迹在坐标纸的左上角到右下角间分布,从而减小测量误差。③坐标原点(小钢球做平抛运动的起点)不是槽口的端点,应是小钢球在槽口时球心在坐标纸上的水平投影点。实验原理及操作【例1】用如图1所示装置研究平抛运动。将白纸和复写纸对齐重叠并固定在竖直的硬板上。钢球沿斜槽轨道PQ滑下后从Q点飞出,落在水平挡板MN上。由于挡板靠近硬板一侧较低,钢球落在挡板上时,钢球侧面会在白纸上挤压出一个痕迹点。移动挡板,重新释放钢球,如此重复,白纸上将留下一系列痕迹点。图1(1)下列实验条件必须满足的有________。A.斜槽轨道光滑B.斜槽轨道末段水平C.挡板高度等间距变化D.每次从斜槽上相同的位置无初速度释放钢球(2)为定量研究,建立以水平方向为x轴、竖直方向为y轴的坐标系。a.取平抛运动的起始点为坐标原点,将钢球静置于Q点,钢球的________(选填“最上端”“最下端”或“球心”)对应白纸上的位置即为原点;在确定y轴时________(选填“需要”或“不需要”)y轴与重垂线平行。b.若遗漏记录平抛轨迹的起始点,也可按下述方法处理数据:如图2所示,在轨迹上取A、B、C三点,AB和BC的水平间距相等且均为x,测得AB和BC的竖直间距分别是y1和y2,则eq\f(y1,y2)____eq\f(1,3)(选填“大于”“等于”或“小于”)。可求得钢球平抛的初速度v0大小为________(已知当地重力加速度为g,结果用上述字母表示)。图2(3)为了得到平抛物体的运动轨迹,同学们还提出了以下三种方案,其中可行的是________。A.从细管水平喷出稳定的细水柱,拍摄照片,即可得到平抛运动轨迹B.用频闪照相法在同一底片上记录平抛钢球在不同时刻的位置,平滑连接各位置,即可得到平抛运动轨迹C.将铅笔垂直于竖直的白纸板放置,笔尖紧靠白纸板,铅笔以一定初速度水平抛出,将会在白纸上留下笔尖的平抛运动轨迹[解析]根据平抛运动的规律:水平方向做匀速直线运动,竖直方向做自由落体运动解答。(1)本实验中要保证钢球飞出斜槽末端时的速度水平,即钢球做平抛运动,且每次飞出时的速度应相同,所以只要每次将钢球从斜槽上同一位置由静止释放即可,故B、D正确。(2)a.平抛运动的起始点应为钢球静置于Q点时,钢球的球心对应纸上的位置,由于平抛运动在竖直方向做自由落体运动,所以在确定y轴时需要y轴与重垂线平行;b.由初速度为零的匀加速直线运动规律即在相等时间间隔内所通过的位移之比为1∶3∶5∶7∶…可知,由于A点不是抛出点,所以eq\f(y1,y2)>eq\f(1,3);设AB、BC间所用的时间为T,竖直方向有:y2-y1=gT2,水平方向有:x=v0T,联立解得:v0=xeq\r(\f(g,y2-y1))。(3)平抛运动的特性:初速度为v0,加速度为g,细管水平喷出水柱满足要求,A正确;用频闪照相法在同一底片上记录钢球不同时刻的位置即平抛运动的轨迹上的点,平滑连接在一起即为平抛运动轨迹,所以此方案可行,B正确;将铅笔垂直于竖直的白板放置,以一定初速度水平抛出,笔尖与白纸间有摩擦阻力,所以铅笔做的不是平抛运动,故此方案不可行,C错误。【答案】(1)BD(2)a.球心需要b.大于xeq\r(\f(g,y2-y1))(3)AB数据处理【例2】(1)在“研究平抛物体的运动”的实验中,为减小空气阻力对小球的影响,选择小球时,应选择下列的________。A.实心小铁球 B.空心铁球C.实心小木球 D.以上三种球都可以(2)在研究平抛运动的实验中,斜槽末端要________,且要求小球要从________________释放,现用一张印有小方格的纸记录轨迹,小方格边长L=2.5cm,若小球在平抛运动途中的几个位置如图所示,小球由A到B位置的时间间隔为________s,小球平抛的初速度大小为________m/s。小球在B点的速度为________m/s。[解析](1)为了减小空气阻力对小球的影响,要选择体积较小质量较大的小球,故选实心小铁球,故A正确,B、C、D错误;(2)在研究平抛运动的实验中,为保证小球做平抛运动,斜槽末端要水平,为保证每次运动轨迹相同,要求小球从同一位置无初速度释放,小球竖直方向做自由落体运动,有:Δh=gT2,即为:L=gT2,得:T=eq\r(\f(L,g))=eq\r(\f(2.5×10-2,10))s=0.05s。小球初速度为:v0=eq\f(x,T)=eq\f(2×2.5×10-2,0.05)m/s=1m/s;B位置竖直方向速度为:vy=eq\f(3L,2T)=eq\f(3×2.5×10-2,2×0.05)m/s=0.75m/s;则B点的速度为:vB=eq\r(v\o\al(2,0)+v\o\al(2,y))=eq\r(12+0.752)m/s=1.25m/s。[答案](1)A(2)切线水平同一位置无初速度0.0511.25实验拓展与创新【例3】某同学设计了一个研究平抛运动的实验,实验装置示意图如图甲所示。A是一块水平木板,在其上等间隔地开凿出一组平行的插槽(甲图中的P0P0′、P1P1′…),槽间距离均为d。把覆盖复写纸的白纸铺贴在硬板B上,实验时依次将B插入A板的各插槽中,每次让小球从斜轨的同一位置由静止释放。每打完一点后,把B板插入后一槽中并同时向纸面内侧平移距离d。实验得到小球在白纸上打下的若干痕迹点,如图乙所示。甲乙(1)实验前应对实验装置反复调节,直到______________为止。每次让小球从同一位置由静止释放,是为了________________。(2)每次将B板向纸面内侧平移距离d,是为了_________。(3)在图乙中绘出小球做平抛运动的轨迹。[思路点拨]本题是利用留迹法描绘平抛运动的轨迹,解题的关键是明确每次将B板向纸面内侧平移距离d的目的。[解析](1)小球每次离开斜轨后,应做轨迹相同的平抛运动,所以实验前要反复调节实验装置,使斜轨末端水平。每次从同一位置由静止释放小球,是为了使小球每次运动的初速度相同。(2)每次B板插入后一槽中会使小球的水平位移增加d,所以每次将B板向纸面内侧平移d,就可以对应水平位移的变化,使B板上的x坐标能表示水平位置的变化。(3)用平滑曲线连接各点,可得轨迹如图所示。【答案】(1)斜轨末端水平保证小球每次射出时初速度相同(2)使板上的x坐标能表示小球的水平位移(3)如解析图所示5.4抛体运动的规律一、平抛运动的速度将物体以初速度v0水平抛出,由于物体只受重力作用,t时刻的速度为:1.水平方向:vx=v0。2.竖直方向:vy=gt。3.合速度eq\b\lc\{\rc\(\a\vs4\al\co1(大小:v=\r(v\o\al(2,x)+v\o\al(2,y))=\r(v\o\al(2,0)+g2t2),方向:tanθ=\f(vy,vx)=\f(gt,v0)θ为速度方向与,水平方向间的夹角))[特别提示]由tanθ=eq\f(gt,v0)知,速度与水平方向的夹角随时间t的增大而增大,但一定不会达到90°,因为水平方向上的分运动是匀速直线运动,水平分速度不变,合速度也就不可能沿竖直方向。二、平抛运动的位移与轨迹将物体以初速度v0水平抛出,经时间t,物体的位移为:1.水平方向:x=v0t。2.竖直方向:y=eq\f(1,2)gt2。3.合位移eq\b\lc\{\rc\(\a\vs4\al\co1(大小:s=\r(x2+y2)=\r(v0t2+\f(1,2)gt22),方向:tanα=\f(y,x)=\f(gt,2v0)α为位移方向与,水平方向间的夹角))4.轨迹:由水平方向x=v0t解出t=eq\f(x,v0),代入y=eq\f(1,2)gt2得y=eq\f(g,2v\o\al(2,0))x2,平抛运动的轨迹是一条抛物线。[特别提示]y=eq\f(g,2v\o\al(2,0))x2中,g、v0都是与t无关的常量,所以eq\f(g,2v\o\al(2,0))是与x,y无关的常量。y=eq\f(g,2v\o\al(2,0))x2与数学中的二次函数方程y=ax2形式相似,二次函数的图像是一条抛物线,“抛物线”的名称就是由抛体运动得来的。三、一般的抛体运动物体抛出的速度v0沿斜上方或斜下方时,物体做斜抛运动(设v0与水平方向夹角为θ),如图所示。1.水平方向:物体做匀速直线运动,初速度vx=v0cosθ。2.竖直方向:物体做竖直上抛或竖直下抛运动,初速度vy=v0sinθ。平抛运动的研究方法及规律如图所示,一人正练习投掷飞镖,如果不计空气阻力,(1)飞镖投出后,受力情况怎样?其加速度的大小和方向是怎样的?(2)飞镖的运动是匀变速运动,还是变加速运动?运动轨迹如何?(3)为了研究问题方便,我们可以将平抛运动转化为哪两个方向的直线运动?提示:(1)因忽略空气阻力,飞镖投出后,只受重力作用,其加速度大小为g,方向竖直向下。(2)飞镖运动过程中,加速度是不变的,所以飞镖的运动是匀变速曲线运动,轨迹是抛物线。(3)可将平抛运动转化为水平方向的匀速直线运动和竖直方向的自由落体运动。1.平抛运动的特点项目物理特性理想化特点物理上提出的平抛运动是一种理想化的模型,即把物体看成质点,抛出后只考虑重力作用,忽略空气阻力速度平抛运动的速度大小和方向都不断改变,故它是变速运动加速度平抛运动的加速度为自由落体加速度,恒定不变,故它是匀变速曲线运动速度变化做平抛运动的物体任意相等时间内速度变化量相等,均为Δv=gΔt,方向竖直向下2.(1)平抛运动的规律及处理方法速度位移水平分运动水平速度vx=v0水平位移x=v0t竖直分运动竖直速度vy=gt竖直位移y=eq\f(1,2)gt2合运动大小:v=eq\r(v\o\al(2,0)+gt2)方向:与水平方向夹角为θ,tanθ=eq\f(vy,vx)=eq\f(gt,v0)大小:s=eq\r(x2+y2)方向:与水平方向夹角为α,tanα=eq\f(y,x)=eq\f(gt,2v0)图示(2)平抛运动的研究方法:研究平抛运动通常采用“化曲为直”的方法,即将平抛运动分解为竖直方向上的自由落体运动和水平方向上的匀速直线运动。3.方法(1)利用水平位移或竖直位移求解时间:根据水平方向x=v0t或竖直方向y=eq\f(1,2)gt2可求解时间。(2)利用竖直分速度可求解时间:先求出竖直分速度,再根据vy=gt可求解时间。(3)利用匀变速直线运动的推论Δy=gT2可求解时间。4.平抛运动的两个推论(1)平抛运动中的某一时刻,速度与水平方向夹角为θ,位移与水平方向夹角为α,则tanθ=2tanα。证明:因为tanθ=eq\f(vy,v0)=eq\f(gt,v0),tanα=eq\f(y,x)=eq\f(gt,2v0),所以tanθ=2tanα。(2)做平抛运动的物体,任意时刻瞬时速度的反向延长线一定通过此时水平位移的中点。证明:如图所示,P点速度的反向延长线交OB于A点。则eq\x\to(OB)=v0t,eq\x\to(AB)=eq\f(\x\to(PB),tanθ)=eq\f(1,2)gt2·eq\f(v0,gt)=eq\f(1,2)v0t。可见eq\x\to(AB)=eq\f(1,2)eq\x\to(OB)。【例1】如图所示,从某高度水平抛出一小球,经过时间t到达地面时,速度与水平方向的夹角为θ,不计空气阻力,重力加速度为g。下列说法正确的是()A.小球水平抛出时的初速度大小为gttanθB.小球在t时间内的位移方向与水平方向的夹角为eq\f(θ,2)C.若小球初速度增大,则平抛运动的时间变长D.若小球初速度增大,则θ减小思路点拨:①通过对落地点的速度分解,分析A、D两个选项。②通过该过程中位移的分解,分析B、C两个选项。D[如图所示,小球竖直方向的速度为vy=gt,则初速度为v0=eq\f(gt,tanθ),选项A错误;平抛运动的时间t=eq\r(\f(2y,g)),由高度决定,与初速度无关,选项C错误;位移方向与水平方向的夹角为α,tanα=eq\f(y,x)=eq\f(\f(1,2)gt2,v0t)=eq\f(gt,2v0),tanθ=eq\f(vy,v0)=eq\f(gt,v0),则tanθ=2tanα,但α≠eq\f(θ,2),选项B错误;由于tanθ=eq\f(gt,v0),若小球的初速度增大,则θ减小,选项D正确。](1)上例中,小球在水平方向的位移是多少?[解析]小球在竖直方向的速度vy=gt ①则v0=eq\f(gt,tanθ) ②x=v0t=eq\f(gt2,tanθ)。(2)在上例中,小球落地时的速度是多大?[解析]小球在竖直方向的速度vy=gt ①则v=eq\f(vy,sinθ)=eq\f(gt,sinθ)。(1)平抛运动中,速度偏向角是指过该点轨迹的切线与水平方向的夹角;位移偏向角是指该点与起点的连线与水平方向的夹角,不要将两者混淆。(2)平抛运动中,某时刻速度、位移与初速度方向的夹角θ、α的关系为tanθ=2tanα,而不要误记为θ=2α。与斜面相关的平抛运动两个小球A和B以不同的水平初速度抛出后落到斜面上同一位置,(1)两小球在落点的速度方向是否相同?(2)小球在运动过程中,距斜面最远时的条件?提示:(1)两个小球在落点的速度方向相同。(2)当小球的合速度方向与斜面平行时,小球距斜面最远。1.常见的两类问题(1)物体从斜面上某一点抛出以后又重新落在斜面上,此时平抛运动物体的合位移方向与水平方向的夹角等于斜面的倾角。(2)做平抛运动的物体垂直打在斜面上,此时物体的合速度方向与斜面垂直。位移与水平方向的夹角为α速度与竖直方向的夹角为θ2.基本求解思路题干信息实例处理方法或思路速度方向垂直打在斜面上的平抛运动(1)会速度分解图,确定速度与竖直方向的夹角(2)根据水平方向和竖直方向的运动规律分析vx、vy(3)根据tanθ=eq\f(vx,vy)列方程求解位移方向从斜面上水平抛出后又落在斜面上的平抛运动(1)确定位移与水平方向的夹角α,画位移分解图(2)根据水平方向和竖直方向的运动规律分析x、y(3)根据tanα=eq\f(y,x)列方程求解【例2】如图所示,小球以v0正对倾角为θ的斜面水平抛出,若小球到达斜面的位移最小,则以下说法正确的是(重力加速度为g)()A.小球空中运动时间为eq\f(v0,gtanθ)B.小球的水平位移大小为eq\f(2v\o\al(2,0),gtanθ)C.由于不知道抛出点位置,位移大小无法求解D.小球的竖直位移大小为eq\f(v\o\al(2,0),gtanθ)[思路点拨]“小球到达斜面的位移最小”隐含的条件是小球的位移与斜面垂直,利用数学知识得出水平位移x与竖直位移y之间的关系,就能求解。B[如图所示,过抛出点作斜面的垂线;当小球落在斜面上的B点时,位移最小,设运动的时间为t,则水平方向:x=v0t;竖直方向:y=eq\f(1,2)gt2。根据几何关系有eq\f(x,y)=tanθ;联立解得t=eq\f(2v0,gtanθ);小球的水平位移大小为x=v0t=eq\f(2v\o\al(2,0),gtanθ);竖直位移大小为y=eq\f(1,2)gt2=eq\f(2v\o\al(2,0),gtan2θ),由水平位移和竖直位移可求解位移的大小;故A、C、D错误,B正确。][解题技巧]解决与斜面结合的平抛运动问题的“三类突破口”1若水平位移、水平速度已知,可应用x=v0t列式,作为求解问题的突破口。2若竖直高度或竖直分速度已知,可应用y=eq\f(1,2)gt2或vy=gt列式,作为求解问题的突破口。3若物体的末速度的方向或位移的方向已知,可应用tanθ=eq\f(gt,v0)θ是物体速度与水平方向的夹角或tanα=eq\f(gt,2v0)α是物体的位移与水平方向的夹角列式作为求解问题的突破口。一般的抛体运动体育运动中投掷的链球、铅球、铁饼、标枪等(如图所示),都可以看作是斜上抛运动。以抛出的铅球为例:(1)铅球离开手后,如不考虑空气阻力,其受力情况、速度有何特点?(2)铅球在最高点的速度是零吗?提示:(1)不考虑空气阻力,铅球在水平方向不受力,在竖直方向只受重力,加速度为g,其初速度不为零,初速度方向斜向上方。(2)不是。由于铅球在水平方向做匀速运动,所以铅球在最高点的速度等于水平方向的分速度。1.斜抛运动的规律:斜抛物体的轨迹(1)速度规律水平速度:vx=v0x=v0cosθ。竖直速度:vy=v0y-gt=v0sinθ-gt。t时刻的速度大小为v=eq\r(v\o\al(2,x)+v\o\al(2,y))。(2)位移规律水平位移:x=v0xt=v0tcosθ。竖直位移:y=v0tsinθ-eq\f(1,2)gt2。t时间内的位移大小为s=eq\r(x2+y2),与水平方向成α角,且tanα=eq\f(y,x)。2.射高和射程:(1)斜抛运动的飞行时间:t=eq\f(2v0y,g)=eq\f(2v0sinθ,g)。(2)射高:h=eq\f(v\o\al(2,0y),2g)=eq\f(v\o\al(2,0)sin2θ,2g)。(3)射程:s=v0cosθ·t=eq\f(2v\o\al(2,0)sinθcosθ,g)=eq\f(v\o\al(2,0)sin2θ,g),对于给定的v0,当θ=45°时,射程达到最大值,smax=eq\f(v\o\al(2,0),g)。3.一般抛体运动问题的分析思路:一般抛体运动问题的处理方法和平抛运动的处理方法相同,都是将运动分解为两个方向的简单的直线运动,分别为水平方向的匀速直线运动和竖直方向的匀变速直线运动。【例3】(多选)如图所示,从地面上同一位置抛出两小球A、B,分别落在地面上的M、N点,两球运动的最大高度相同。空气阻力不计,则()A.B的加速度比A的大B.B的飞行时间比A的长C.B在最高点的速度比A在最高点的大D.B在落地时的速度比A在落地时的大CD[A、B两球都做斜上抛运动,只受重力作用,加速度即为重力加速度,A项错误;在竖直方向上做竖直上抛运动,由于上升的竖直高度相同,竖直分速度相等,所以两小球在空中飞行的时间相等,B项错误;由于B球的水平射程比A球的大,故B球的水平速度及落地时的速度均比A球的大,C、D项正确。][解题技巧]斜上抛运动问题的分析技巧(1)斜上抛运动问题可用运动的合成与分解进行分析,即水平方向的匀速直线运动和竖直方向的竖直上抛运动。(2)运动时间及射高由竖直分速度决定,射程由水平分速度和抛射角决定。(3)由抛出点到最高点的过程可逆向看作平抛运动来分析。专题抛体运动规律的应用平抛运动与曲面的结合问题两种常见类型(1)抛出点和落点都在圆面上。如图所示,一小球从与圆心等高的半圆形轨道的A点以v0水平向右抛出,落在圆形轨道上的C点。(2)抛出点在圆面外,落点在圆面上。如图所示,一小球从一半圆轨道左端A点正上方某处开始做平抛运动,飞行过程中恰好与半圆轨道相切于B点。【例1】(多选)如图所示,一个半径R=0.75m的半圆柱体放在水平地面上,一小球从圆柱体左端A点正上方的B点水平抛出(小球可视为质点),恰好从半圆柱体的C点掠过。已知O为半圆柱体圆心,OC与水平方向夹角为53°,重力加速度为g=10m/s2,则()A.小球从B点运动到C点所用时间为0.3sB.小球从B点运动到C点所用时间为0.5sC.小球做平抛运动的初速度为4m/sD.小球做平抛运动的初速度为6m/s[思路点拨]将小球在C点的速度和经过的位移沿水平方向和竖直方向分解,然后利用圆的几何特点结合平抛运动规律进行求解,注意速度方向与水平方向夹角的正切值等于位移方向与水平方向夹角正切值的2倍。AC[小球做平抛运动,飞行过程中恰好与半圆轨道相切于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025机器买卖合同
- 2025资金托管合同范本资金托管协议书
- 2025进料加工贸易合同
- 二零二五年度企业法人股东退出合同3篇
- 二零二五年度景区保洁员劳动合同3篇
- 2025年度兼职协议书-企业数据分析师兼职服务协议3篇
- 2025年度养牛产业养殖废弃物综合利用合作合同3篇
- 二零二五年度绿色建筑经营权承包管理协议书3篇
- 2025年度退股投资者关系维护协议3篇
- 二零二五年度农村自建房农村自建房施工安全责任合同
- 公交车站台服务规范与安全意识
- 2024电商消费趋势年度报告-flywheel飞未-202412
- 《农机安全》课件
- 浙江省温州市2023-2024学年六年级上学期期末科学试卷(含答案)3
- 深圳大学《激光原理与技术》2023-2024学年第一学期期末试卷
- 西安市高新第一中学八年级上册地理期末试卷(含答案)
- 2024年广东省深圳市中考英语适应性试卷
- 普法学法知识考试题库(100题附答案)
- DB37-T 1722-2024公路工程高性能沥青混合料施工技术规范
- 四年级数学上册期末试卷
- 中国普通食物营养成分表(修正版)
评论
0/150
提交评论