




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省凉州区金羊镇皇台九制学校2024届八年级数学第二学期期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.已知直线y=2x-b经过点(1,-1),则b的值为()A.3 B.-3 C.0 D.62.医学研究发现一种新病毒的直径约为0.000043毫米,则这个数用科学记数法表示为()A.0.43× B.0.43× C.4.3× D.4.3×3.某组数据方差的计算公式是中,则该组数据的总和为A.32 B.8 C.4 D.24.如图,在正方形ABCD中,点E、F、H分别是AB、BC、CD的中点,CE、DF交于点G,连接AG、HG.下列结论:①CE⊥DF;②AG=DG;③∠CHG=∠DAG.其中,正确的结论有()A.0个 B.1个 C.2个 D.3个5.已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC一定是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形6.如图,菱形ABCD中,AC交BD于点O,于点E,连接OE,若,则()A.20° B.30° C.40° D.50°7.如图,将绕点按顺时针旋转一定角度得到,点的对应点恰好落在边上.若,,则的长为()A.1 B. C.2 D.8.下列命题中的假命题是()A.一组邻边相等的平行四边形是菱形B.一组邻边相等的矩形是正方形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等且有一个角是直角的四边形是矩形9.一个口袋中装有3个绿球,2个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出两个球都是绿球的概率是()A. B. C. D.10.已知y与x成正比例,并且时,,那么y与x之间的函数关系式为()A. B. C. D.二、填空题(每小题3分,共24分)11.勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”.中国是发现和研究勾股定理最古老的国家之一.中国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理.三国时期吴国赵爽创制了“勾股圆方图”(如图)证明了勾股定理.在这幅“勾股圆方图”中,大正方形ABCD是由4个全等的直角三角形再加上中间的那个小正方形EFGH组成的.若小正方形的边长是1,每个直角三角形的短的直角边长是3,则大正方形ABCD的面积是_____.12.计算:=________.13.将2019个边长为2的正方形,按照如图所示方式摆放,O1,O2,O3,O4,O5,…是正方形对角线的交点,那么阴影部分面积之和等于_____.14.某农科院为了选出适合某地种植的甜玉米种子,对甲、乙两个品种甜玉米各用10块试验田进行实验,得到这两个品种甜玉米每公顷产量的两组数据(如图所示).根据图6中的信息,可知在试验田中,____种甜玉米的产量比较稳定.15.如图,在中,,,,P为BC上一动点,于E,于F,M为EF的中点,则AM的最小为___.16.比较大小:_____1.(填“>”、“=”或“<”)17.如图是一次函数的y=kx+b图象,则关于x的不等式kx+b>0的解集为.18.如果一组数据:5,,9,4的平均数为6,那么的值是_________三、解答题(共66分)19.(10分)计算:.20.(6分)某开发公司生产的960件新产品,需要精加工后,才能投放市场.现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完这批产品比乙工厂单独加工完这批产品多用20天,而乙工厂每天比甲工厂多加工8件产品,公司需付甲工厂加工费用每天80元,乙工厂加工费用每天120元.(1)求甲、乙两个工厂每天各能加工多少件新产品.(2)公司制定产品加工方案如下:可以由每个厂家单独完成;也可以由两个厂家同时合作完成.在加工过程中,公司需派一名工程师每天到厂进行技术指导,并负担每天5元的误餐补助费.请你帮助公司选择一种既省时又省钱的加工方案,并说明理由.21.(6分)甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件.22.(8分)如图,在□ABCD中,AC,BD相交于点O,点E在AB上,点F在CD上,EF经过点O.求证:四边形BEDF是平行四边形.23.(8分)如图,点A.F、C.D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形,(2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形.24.(8分)小聪和小明沿同一条路同时从学校出发到某超市购物,学校与超市的路程是4千米.小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达超市.图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在超市购物的时间为分钟,小聪返回学校的速度为千米/分钟;(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?25.(10分)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120∘,∠B=∠ADC=90°.E、F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G,使DG=BE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是_________;探索延伸:如图2,若四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以55海里/小时的速度前进,舰艇乙沿北偏东50°的方向以75海里/小时的速度前进2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.26.(10分)解方程:-=1.
参考答案一、选择题(每小题3分,共30分)1、A【解题分析】
将点(1,-1)代入y=2x-b,即可求解.【题目详解】解:将点(1,-1)代入y=2x-b得:-1=2-b,解得:b=3,故选:A.【题目点拨】本题考查的是一次函数点的坐标特征,将点的坐标代入函数表达式即可求解.2、D【解题分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】解:0.000043毫米,则这个数用科学记数法表示为4.3×10-5毫米,故选:D.【题目点拨】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3、A【解题分析】
样本方差,其中n是这个样本的容量,是样本的平均数利用此公式直接求解.【题目详解】由知共有8个数据,这8个数据的平均数为4,则该组数据的综合为,故选:A.【题目点拨】本题主要考查方差,解题的关键是掌握方差的计算公式及公式中的字母所表示的意义.4、C【解题分析】
连接AH,由四边形ABCD是正方形与点E、F、H分别是AB、BC、CD的中点,容易证得△BCE≌△CDF与△ADH≌△DCF,根据全等三角形的性质,容易证得CE⊥DF与AH⊥DF,故①正确;根据垂直平分线的性质,即可证得AG=AD,继而AG=DC,而DG≠DC,所以AG≠DG,故②错误;由直角三角形斜边上的中线等于斜边的一半,即可证得HG=DC,∠CHG=2∠GDC,根据等腰三角形的性质,即可得∠DAG=2∠DAH=2∠GDC.所以∠DAG=∠CHG,④正确,则问题得解.【题目详解】∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=90°,∵点E.F.H分别是AB、BC、CD的中点,∴BE=FC∴△BCE≌△CDF,∴∠ECB=∠CDF,∵∠BCE+∠ECD=90°,∴∠ECD+∠CDF=90°,∴∠CGD=90°,∴CE⊥DF,故①正确;连接AH,同理可得:AH⊥DF,∵CE⊥DF,∴△CGD为直角三角形,∴HG=HD=CD,∴DK=GK,∴AH垂直平分DG,∴AG=AD=DC,
在Rt△CGD中,DG≠DC,∴AG≠DG,故②错误;∵AG=AD,AH垂直平分DG∴∠DAG=2∠DAH,根据①,同理可证△ADH≌△DCF∴∠DAH=∠CDF,∴∠DAG=2∠CDF,∵GH=DH,∴∠HDG=∠HGD,∴∠GHC=∠HDG+∠HGD=2∠CDF,∴∠GHC=∠DAG,故③正确,所以①和③正确选择C.【题目点拨】本题考查正方形的性质,全等三角形的判定与性质,利用边角边,容易证明△BCE≌△CDF,从而根据全等三角形的性质和等量代换即可证∠ECD+∠CDF=90°,从而①可证;证②时,可先证AG=DC,而DG≠DC,所以②错误;证明③时,可利用等腰三角形的性质,证明它们都等于2∠CDF即可.5、B【解题分析】
依据作图即可得到AC=AN=4,BC=BM=3,AB=2+2+1=5,进而得到AC2+BC2=AB2,即可得出△ABC是直角三角形.【题目详解】如图所示,AC=AN=4,BC=BM=3,AB=2+2+1=5,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,故选B.【题目点拨】本题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.6、A【解题分析】
根据直角三角形的斜边中线性质可得OE=OB=OD,根据菱形性质可得∠DBE=∠ABC=70°,从而得到∠OEB度数,再依据∠OED=90°-∠OEB即可.【题目详解】解:∵四边形ABCD是菱形,∴O为BD中点,∠DBE=∠ABC=70°,∵DE⊥BC,∴在Rt△BDE中,OE=OB=OD,∴∠OEB=∠OBE=70°,∴∠OED=90°-70°=20°,故选A.【题目点拨】本题主要考查了菱形的性质、直角三角形斜边中线的性质,解决这类问题的方法是四边形转化为三角形.7、C【解题分析】
先根据旋转的性质判断出是等边三角形,然后设,得到,,利用勾股定理进行计算即可.【题目详解】根据题意可知AB=AD,且∠ABD=60°,∴是等边三角形,且,设,则,,所以,,在中,,得,(负值已舍).故选C.【题目点拨】此题考查旋转的性质,解题关键在于掌握旋转的性质,再利用勾股定理进行计算.8、D【解题分析】要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.解:A、根据菱形的判定定理,正确;B、根据正方形和矩形的定义,正确;C、符合平行四边形的定义,正确;D、错误,可为不规则四边形.故选D.9、B【解题分析】
首先根据题意列出表格,然后由表格求得所有等可能的结果与从中摸出两个球都是绿球的情况,再利用概率公式求解即可求得答案.【题目详解】解:列表得:∵共有20种等可能的结果,从中摸出两个球都是绿球的有6种情况,
∴从中摸出两个球都是绿球的概率是:.故选:B.【题目点拨】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.10、A【解题分析】
根据y与x成正比例,可设,用待定系数法求出k值.【题目详解】解:设,将,,代入得:解得:k=8,所以y与x之间的函数关系式为.故答案为:A【题目点拨】本题考查了正比例函数的解析式,根据正比例函数的定义设出其表达式是解题的关键.二、填空题(每小题3分,共24分)11、25【解题分析】
由BF=BE+EF结合“小正方形的边长是1,每个直角三角形的短的直角边长是3”即可得出直角三角形较长直角边的长度,结合三角形的面积公式以及正方形面积公式即可得出结论.【题目详解】∵EF=1,BE=3,∴BF=BE+EF=4,∴S正方形ABCD=4⋅S△BCF+S正方形EFGH=4××4×3+1×1=25.故答案为:25.【题目点拨】此题考查勾股定理的证明,解题关键在于掌握勾股定理的应用12、7【解题分析】
根据平方差公式展开,再开出即可;【题目详解】===7.故答案为7.【题目点拨】本题考查了二次根式的化简,主要考查学生的计算和化简能力,题目比较好,难度适中.13、2【解题分析】
根据题意可得:阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则2019个这样的正方形重叠部分即为(2019﹣1)个阴影部分的和,问题得解.【题目详解】由题意可得阴影部分面积等于正方形面积的,则一个阴影部分面积为:1.n个这样的正方形重叠部分(阴影部分)的面积和为×(n﹣1)×4=(n﹣1).所以这个2019个正方形重叠部分的面积和=×(2019﹣1)×4=2,故答案为:2.【题目点拨】本题考查了正方形的性质,解决本题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.14、乙【解题分析】试题分析:从图中看到,乙的波动比甲的波动小,故乙的产量稳定.故填乙.考点:方差;折线统计图.点评:本题要求了解方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15、2.1.【解题分析】
解:在△ABC中,AB=6,AC=8,BC=10,∴∠BAC=90°,∵PE⊥AB,PF⊥AC,∴四边形AFPE是矩形,∴AM=AP,根据直线外一点到直线上任一点的距离,垂线段最短,即AP⊥BC时,AP最短,同样AM也最短,∴当AP⊥BC时,△ABP∽△CAB,∴∴∴AP最短时,AP=1.8∴当AM最短时,AM==2.1故答案为:2.1.16、>.【解题分析】【分析】先求出1=,再比较即可.【题目详解】∵12=9<10,∴>1,故答案为:>.【题目点拨】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.17、x>﹣1.【解题分析】试题分析:根据一次函数的图像可知y随x增大而增大,因此可知不等式的解集为x>-1.考点:一次函数与一元一次不等式18、6【解题分析】
根据平均数的定义,即可求解.【题目详解】根据题意,得解得故答案为6.【题目点拨】此题主要考查平均数的求解,熟练掌握,即可解题.三、解答题(共66分)19、【解题分析】
根据分式的基本运算法则,先算括号内,再算除法.【题目详解】试题分析:解:【题目点拨】考点:实数的运算;本题属于基础应用题,只需学生熟练掌握实数的基本运算规则,即可完成.20、(1)甲、乙两个工厂每天各能加工16和24件.(2)合作.【解题分析】解:(1)设甲工厂每天能加工件产品,则乙工厂每天能加工件产品,根据题意,得21、甲每小时加工2个零件,乙每小时加工1个零件.【解题分析】
根据“甲加工12个零件所用的时间与乙加工120个零件所用时间相等”可得出相等关系,从而只需表示出他们各自的时间即可.【题目详解】解:设乙每小时加工机器零件x个,则甲每小时加工机器零件(x+10)个,根据题意得:,解得x=1.经检验,x=1是原方程的解,x+10=1+10=2.答:甲每小时加工2个零件,乙每小时加工1个零件.22、见解析【解题分析】
根据平行四边形性质,先证△ODF≌△OBE,得OF=OE,又OD=OB,可证四边形BEDF是平行四边形.【题目详解】∵在□ABCD中,AC,BD相交于点O,∴DC∥AB,OD=OB.∴∠FDO=∠EBO,∠DFO=∠BEO.∴△ODF≌△OBE.∴OF=OE.∴四边形BEDF是平行四边形.【题目点拨】本题考核知识点:平行四边形的性质和判定.解题关键点:熟记平行四边形的性质和判定.23、(1)见解析(2)当AF=时,四边形BCEF是菱形.【解题分析】
(1)由AB=DE,∠A=∠D,AF=DC,根据SAS得△ABC≌DEF,即可得BC=EF,且BC∥EF,即可判定四边形BCEF是平行四边形.(2)由四边形BCEF是平行四边形,可得当BE⊥CF时,四边形BCEF是菱形,所以连接BE,交CF与点G,证得△ABC∽△BGC,由相似三角形的对应边成比例,即可求得AF的值.【题目详解】(1)证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF.∵在△ABC和△DEF中,AC=DF,∠A=∠D,AB=DE,∴△ABC≌DEF(SAS).∴BC=EF,∠ACB=∠DFE,∴BC∥EF.∴四边形BCEF是平行四边形.(2)解:连接BE,交CF与点G,∵四边形BCEF是平行四边形,∴当BE⊥CF时,四边形BCEF是菱形.∵∠ABC=90°,AB=4,BC=3,∴AC=.∵∠BGC=∠ABC=90°,∠ACB=∠BCG,∴△ABC∽△BGC.∴,即.∴.∵FG=CG,∴FC=2CG=,∴AF=AC﹣FC=5﹣.∴当AF=时,四边形BCEF是菱形.24、(1)15,;(2)s=t;(2)2千米【解题分析】
(1)根据购物时间=离开时间﹣到达时间即可求出小聪在超市购物的时间;再根据速度=路程÷时间即可算出小聪返回学校的速度;(2)根据点的坐标利用待定系数法即可求出小明离开学校的路程s与所经过的时间t之间的函数关系式;(2)根据点的坐标利用待定系数法即可求出当20≤s≤45时小聪离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式,令两函数关系式相等即可得出关于t的一元一次方程,解之即可求出t值,再将其代入任意一函数解析式求出s值即可.【题目详解】解:(1)20﹣15=15(分钟);4÷(45﹣20)=(千米/分钟).故答案为:15;.(2)设小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式为s=mt+n,将(0,0)、(45,4)代入s=mt+n中,,解得:,∴s=t.∴小明离开学校的路程s与所经过的时间t之间的函数关系式为s=t.(2)当20≤s≤45时,设小聪离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式为s=kt+b,将(20,4)、(45,0)代入s=kt+b,,解得:,∴s=﹣t+1.令s=t=﹣t+1,解得:t=,∴s=t=×=2.答:当小聪与小明迎面相遇时,他们离学校的路程是2千米.【题目点拨】本题考查了一次函数的应用以及待定系数法求一次函数解析式,解题的关键是:(1)根据数量关系列式计算;(2)根据点的坐标利用待定系数法求出函数关系式;(2)根据点的坐标利用待定系数法求出函数关系式.25、问题背景:EF=BE+DF,理由见解析;探索延伸:结论仍然成立,理由见解析;实际应用:210海里.【解题分析】
问题背景:延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 乳品工艺技术创新与发展考核试卷
- 勘察项目项目管理气候变化与勘察应对策略考核试卷
- 批发市场的产品陈列与促销技巧考核试卷
- 施工监督与试车开车中安全注意事项考核试卷
- 小学生天气安全教育课件
- 农田土壤售卖合同范本
- 个人产品交易合同范本
- 玻璃浴房合同范本
- 委托装修安全合同范本
- 矿供销合同范本
- 数字赋能农村特色产业发展的实证研究
- Unit 1 My school Part B Let's talk(教学设计)-2023-2024学年人教PEP版英语四年级下册
- 新版华师大版八年级下数学教案全册
- 高中主题班会 《哪吒2》:成长与蜕变课件-高一下学期开学主题班会
- 《教育强国建设规划纲要(2024-2035年)》解读与专题培训
- 抑郁复学申请书
- 【历史】“开元盛世”课件-+2024-2025学年统编版历史七年级下册
- 建筑施工作业人员安全生产知识教育培训考核试卷及答案
- 2025年春新人教版化学九年级下册课件 第九单元 溶液 1-课题1 溶液及其应用 第1课时 溶液的形成
- 《烈士褒扬条例》修订解读:2025年烈士褒扬与抚恤新政策
- 2024-2025学年高中物理第十二章机械波4波的衍射和干涉课时作业含解析新人教版选修3-4
评论
0/150
提交评论