版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省潍坊市诸城市2024届数学八年级第二学期期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列图形既是轴对称图形,又是中心对称图形的是()A.三角形B.菱形C.角D.平行四边形2.直角梯形的一个内角为,较长的腰为6,一底为5,则这个梯形的面积为()A. B. C.25 D.或3.下表是两名运动员10次比赛的成绩,,分别表示甲、乙两名运动员测试成绩的方差,则有()8分9分10分甲(频数)424乙(频数)343A. B. C. D.无法确定4.如图,已知正比例函数与一次函数的图象交于点.下面有四个结论:①;②;③当时,;④当时,.其中正确的是()A.①② B.②④ C.③④ D.①③5.在平面直角坐标系中,若点的坐标为,则点在()A.第一象限. B.第二象限. C.第三象限 D.第四象限6.一天李师傅骑车上班途中因车发生故除,修车耽误了一段时间后继续骑行,按时赶到了单位,如图描述了他上班途中的情景,下列说法中错误的是()A.李师傅上班处距他家200米B.李师傅路上耗时20分钟C.修车后李师傅骑车速度是修车前的2倍D.李师傅修车用了5分钟7.如图,,,点在边上(与、不重合),四边形为正方形,过点作,交的延长线于点,连接,交于点,对于下列结论:①;②四边形是矩形;③.其中正确的是()A.①②③ B.①② C.①③ D.②③8.下列分解因式,正确的是()A. B.C. D.9.以下说法正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直平分的四边形是菱形C.有三个内角相等的四边形是矩形D.对角线垂直且相等的四边形是正方形10.如图,矩形的对角线与数轴重合(点在正半轴上),,,若点在数轴上表示的数是-1,则对角线的交点在数轴上表示的数为()A.5.5 B.5 C.6 D.6.5二、填空题(每小题3分,共24分)11.函数y=中,自变量x的取值范围是______.12.有7个数由小到大依次排列,其平均数是38,如果这组数的前4个数的平均数是33,后4个数的平均数是42,则这7个数的中位数是.13.分式,,的最简公分母__________.14.正方形A1B1C1O、A2B2C2C1、A3B3C3C2…按如图的方式放置,A1、A2、A3…和点C1、C2、C3…分别在直线y=x+2和x轴上,则点∁n的横坐标是_____.(用含n的代数式表示)15.如图所示,在▱ABCD中,对角线AC,BD交于点O,OE∥BC交CD于E,若OE=3cm,则AD的长为.16.如图1,长为60km的某段线路AB上有甲、乙两车,分别从南站A和北站B同时出发相向而行,到达B、A后立刻返回到出发站停止,速度均为30km/h,设甲车,乙车距南站A的路程分别为y甲,y乙(km)行驶时间为t(h).(1)图2已画出y甲与t的函数图象,其中a=,b=,c=.(2)分别写出0≤t≤2及2<t≤4时,y乙与时间t之间的函数关系式.(3)在图2中补画y乙与t之间的函数图象,并观察图象得出在整个行驶过程中两车相遇的次数.17.如图,在平面直角坐标系中,OA=AB,点A的坐标为(2,4),将△OAB绕点B旋转180°,得到△BCD,再将△BCD绕点D旋转180°,得到△DEF,如此进行下去,…,得到折线OA-AC-CE…,点P(2017,b)是此折线上一点,则b的值为_______________.18.甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是______(填“甲”或“乙”)三、解答题(共66分)19.(10分)计算.(3)请完成计算:.20.(6分)(课题研究)旋转图形中对应线段所在直线的夹角(小于等于的角)与旋转角的关系.(问题初探)线段绕点顺时针旋转得线段,其中点与点对应,点与点对应,旋转角的度数为,且.(1)如图(1)当时,线段、所在直线夹角为______.(2)如图(2)当时,线段、所在直线夹角为_____.(3)如图(3),当时,直线与直线夹角与旋转角存在着怎样的数量关系?请说明理由;(形成结论)旋转图形中,当旋转角小于平角时,对应线段所在直线的夹角与旋转角_____.(运用拓广)运用所形成的结论求解下面的问题:(4)如图(4),四边形中,,,,,,试求的长度.21.(6分)某超市销售一种饮料,平均每天可售出100箱,每箱利润120元.为了多销售,增加利润,超市准备适当降价。据测算,若每箱降价2元,每天可多售出4箱.(1)如果要使每天销售饮料获利14000元,则每箱应降价多少元?(2)每天销售饮料获利能达到15000元吗?若能,则每箱应降价多少元?若不能,请说明理由.22.(8分)如图,4×6的正方形网格中,每个小正方形的顶点称为格点,A,B,C均为格点.在下列各图中画出四边形ABCD,使点D也为格点,且四边形ABCD分别符合下列条件:(1)是中心对称图形(画在图1中)(2)是轴对称图形(画在图2中)(3)既是轴对称图形,又是中心对称图形(画在图3中)23.(8分)如图,一次函数y=k1x﹣1的图象经过A(0,﹣1)、B(1,0)两点,与反比例函数y=的图象在第一象限内的交点为M,若△OBM的面积为1.(1)求一次函数和反比例函数的表达式;(2)在x轴上是否存在点P,使AM⊥PM?若存在,求出点P的坐标;若不存在,说明理由;(3)x轴上是否存在点Q,使△QBM∽△OAM?若存在,求出点Q的坐标;若不存在,说明理由.24.(8分)如图,四边形ABCD是正方形,AC与BD,相交于点O,点E、F是边AD上两动点,且AE=DF,BE与对角线AC交于点G,联结DG,DG交CF于点H.(1)求证:∠ADG=∠DCF;(2)联结HO,试证明HO平分∠CHG.25.(10分)如图,已知△ABE,AB、AE的垂直平分线m1、m2分别交BE于点C、D,且BC=CD=DE.(1)求证:△ACD是等边三角形;(2)求∠BAE的度数.26.(10分)如图,在平面直角坐标系中,A(3,0),B(0,3),过点B画y轴的垂线l,点C在线段AB上,连结OC并延长交直线l于点D,过点C画CE⊥OC交直线l于点E.(1)求∠OBA的度数,并直接写出直线AB的解析式;(2)若点C的横坐标为2,求BE的长;(3)当BE=1时,求点C的坐标.
参考答案一、选择题(每小题3分,共30分)1、B【解题分析】【分析】根据轴对称图形与中心对称图形的概念进行求解即可.【题目详解】A、三角形不一定是轴对称图形和中心对称图形,故本选项错误;B、菱形既是轴对称图形又是中心对称图形,故本选项正确;C、角是轴对称图形但不一定是中心对称图形,故本选项错误;D、平行四边形是中心对称图形但不一定是轴对称图形,故本选项错误,故选B.【题目点拨】本题主要考查了中心对称图形与轴对称图形的概念:判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.2、D【解题分析】试题分析:根据“直角梯形的一个内角为120°,较长的腰为6cm”可求得直角梯形的高,由于一底边长为5cm不能确定是上底还是下底,故要分两种情况讨论梯形的面积,根据梯形的面积公式=(上底+下底)×高,分别计算即可.解:根据题意可作出下图.BE为高线,BE⊥CD,即∠A=∠C=90°,∠ABD=120°,BD=6cm,∵AB∥CD,∠ABD=120°,∴∠D=60°,∴BE=6×sin60°=3cm;ED=6×cos60°=3cm;当AB=5cm时,CD=5+3=8cm,梯形的面积=cm2;当CD=5cm时,AB=5−3=2cm,梯形的面积=cm2;故梯形的面积为或,故选D.3、A【解题分析】【分析】先求甲乙平均数,再运用方差公式求方差.【题目详解】因为,,,所以,=,=,所以,故选A【题目点拨】本题考核知识点:方差.解题关键点:熟记方差公式.4、D【解题分析】
利用两函数图象结合与坐标轴交点进而分别分析得出答案.【题目详解】如图所示:
∵y1=ax,经过第一、三象限,
∴a>0,故①正确;
∵与y轴交在正半轴,
∴b>0,
故②错误;
∵正比例函数y1=ax,经过原点,
∴当x<0时,函数图像位于x轴下方,∴y1<0;故③正确;
当x>2时,y1>y2,故④错误.
故选:D.【题目点拨】此题考查一次函数与一元一次不等式,正确利用数形结合分析是解题关键.5、D【解题分析】
根据点的坐标为的横纵坐标的符号,可得所在象限.【题目详解】∵2>0,-2<0,∴点在位于平面直角坐标系中的第四象限.故选D.【题目点拨】本题考查了平面直角坐标系中各象限内点的坐标的符号特征.四个象限内点的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).6、A【解题分析】
观察图象,明确每一段小明行驶的路程,时间,作出判断.【题目详解】A.李师傅上班处距他家2000米,此选项错误;B.李师傅路上耗时20分钟,此选项正确;C.修车后李师傅骑车速度是2000-100020-15=200米/分钟,修车前速度为100010=100米/分钟,∴修车后李师傅骑车速度是修车前的2倍,D.李师傅修车用了5分钟,此选项正确.故选A.【题目点拨】本题考查了学生从图象中读取信息的能力,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.7、A【解题分析】
由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;由△AFG≌△DAC,推出四边形BCGF是矩形,②正确;由矩形的性质和相似三角形的判定定理证出△ACD∽△FEQ,③正确.【题目详解】解:①∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠GAF+∠AFG=90°,∴∠CAD=∠AFG,在△FGA和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG.故正确;②∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形.故正确;③∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ.故正确.综上所述,正确的结论是①②③.故选A.【题目点拨】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.8、B【解题分析】
把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.据此作答.【题目详解】A.和因式分解正好相反,故不是分解因式;B.是分解因式;C.结果中含有和的形式,故不是分解因式;D.x2−4y2=(x+2y)(x−2y),解答错误.故选B.【题目点拨】本题考查的知识点是因式分解定义和十字相乘法分解因式,解题关键是注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.9、B【解题分析】
根据平行四边形与特殊平行四边形的判定定理判断即可.【题目详解】A.一组对边平行且相等的四边形是平行四边形,一组对边平行,另一组对边相等的四边形是可能是等腰梯形,故A错误;B.对角线互相垂直平分的四边形是菱形,正确;C.有三个内角都是直角的四边形是矩形,三个相等的内角不是直角,那么也不能判定为矩形,故C错误;D.对角线垂直平分且相等的四边形是正方形,故D错误.故选B.【题目点拨】本题考查平行四边形与特殊平行四边形的判定定理,熟练掌握判定定理是解题的关键.10、A【解题分析】
连接BD交AC于E,由矩形的性质得出∠B=90°,AE=AC,由勾股定理求出AC,得出OE,即可得出结果.【题目详解】连接BD交AC于E,如图所示:∵四边形ABCD是矩形,∴∠B=90°,AE=AC,∴AC=,∴AE=6.5,∵点A表示的数是-1,∴OA=1,∴OE=AE-OA=5.5,∴点E表示的数是5.5,即对角线AC、BD的交点表示的数是5.5;故选A.【题目点拨】本题考查了矩形的性质、勾股定理、实数与数轴;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.二、填空题(每小题3分,共24分)11、x≠1【解题分析】
根据分母不能为零,可得答案.【题目详解】解:由题意,得x-1≠0,解得x≠1,故答案为:x≠1.【题目点拨】本题考查了函数自变量的取值范围,利用分母不能为零得出不等式是解题关键.12、34【解题分析】试题解析:解:设这7个数的中位数是x,根据题意可得:,解方程可得:x=34.考点:中位数、平均数点评:本题主要考查了平均数和中位数.把一组数据按照从小到大的顺序或从大到小的顺序排列,最中间的一个或两个数的平均数叫做这组数据的中位数.13、【解题分析】
确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【题目详解】分式,,的分母分别是x、3xy、6(x-y),故最简公分母是,故答案为.【题目点拨】此题考查最简公分母,难度不大14、【解题分析】
观察图像,由直线y=x+2和正方形的关系,即可得出规律,推导出Cn的横坐标.【题目详解】解:根据题意,由图像可知,,正方形A1B1C1O、A2B2C2C1,直线y=x+2的斜率为1,则以此类推,,【题目点拨】此题主要考查一次函数图像的性质和正方形的关系,推导得出关系式.15、6cm.【解题分析】试题分析:由平行四边形ABCD中,对角线AC和BD交于点O,OE∥BC,可得OE是△ACD的中位线,根据三角形中位线的性质,即可求得AD的长.解:∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∵OE∥BC,∴OE∥AD,∴OE是△ACD的中位线,∵OE=3cm,∴AD=2OE=2×3=6(cm).故答案为:6cm.【点评】此题考查了平行四边形的性质以及三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.16、(1)a=3,b=2,c=1.y乙=3-30t(0≤t≤2)y乙=30t-3(2<t≤1).相遇次数为2.【解题分析】试题分析:(1)由函数图象的数据,根据行程问题的数量关系就可以求出结论;(2)当0≤t≤2时,设y乙与时间t之间的函数关系式为y乙=kx+b;当2<t≤1时,设y乙与时间t之间的函数关系式为y乙=k1x+b1;由待定系数法就可以求出结论;(3)通过描点法画出函数图象即可.试题解析:(1)由题意,得a=3,b=2,c=1.故答案为:3,2,1;(2)当0≤t≤2时,设y乙与时间t之间的函数关系式为y乙=kx+b,由题意,得,解得:,∴y乙=-30t+3当2<t≤1时,设y乙与时间t之间的函数关系式为y乙=k1x+b1,由题意,得,解得:,∴y乙=30t-3.(3)列表为:t021y乙=-30t+3(0≤t≤2)30y乙=30t-3(2<t≤1)03描点并连线为:如图,由于两个图象有两个交点,所以在整个行驶过程中两车相遇次数为2.考点:一次函数的应用.17、2【解题分析】分析:根据规律发现点O到点D为一个周期,根据其坐标规律即可解答.详解:∵点A的坐标为(2,4)且OA=AB,∴O(0,0),B(4,0),C(6,-4),D(8,0),2017÷8=252……1,∴b==2.点睛:本题主要考查了点的坐标,发现其坐标规律是解题的关键.18、甲【解题分析】由图表明乙这8次成绩偏离平均数大,即波动大,而甲这8次成绩,分布比较集中,各数据偏离平均小,方差小,则S2甲<S2乙,即两人的成绩更加稳定的是甲.故答案为甲.三、解答题(共66分)19、(1);;;(2);(3)【解题分析】
(1)首先观察式子,可得出第一个式子=,第二个式子=,可得出规律,即可得出第三个式子=;(2)根据(1)中探寻的规律,即可得出式子=;(3)发现规律之后,运用规律计算即可.【题目详解】(1);;(2)(3)【题目点拨】此题主要考查利用数字探寻规律,总结规律,运用规律计算,仔细观察,不难推导.20、(1)90°;(2)60°;(3)互补,理由见解析;相等或互补;(4).【解题分析】
(1)通过作辅助线如图1,延长DC交AB于F,交BO于E,可以通过旋转性质得到AB=CD,OA=OC,BO=DO,证明△AOB≌△COD,进而求得∠B=∠D得∠BFE=∠EOD=90°(2)通过作辅助线如图2,延长DC交AB于F,交BO于E,同(1)得∠BFE=∠EOD=60°(3)通过作辅助线如图3,直线与直线所夹的锐角与旋转角互补,延长,交于点通过证明得,再通过平角的定义和四边形内角和定理,证得;形成结论:通过问题(1)(2)(3)可以总结出旋转图形中,当旋转角小于平角时,对应线段所在直线的夹角与旋转角相等或互补;(4)通过作辅助线如图:将绕点顺时针旋转,使得与重合,得到,连接,延长,交于点,可得,进一步得到△BDF是等边三角形,,再利用勾股定理求得.【题目详解】(1)解:(1)如图1,延长DC交AB于F,交BO于E,
∵α=90°
∴∠BOD=90°
∵线段AB绕点O顺时针旋转得线段CD,
∴AB=CD,OA=OC,BO=DO
∴△AOB≌△COD(SSS)
∴∠B=∠D
∵∠B=∠D,∠OED=∠BEF
∴∠BFE=∠EOD=90°
故答案为:90°
(2)如图2,延长DC交AB于F,交BO于E,
∵α=60°
∴∠BOD=60°
∵线段AB绕点O顺时针旋转得线段CD,
∴AB=CD,OA=OC,BO=DO
∴△AOB≌△COD(SSS)
∴∠B=∠D
∵∠B=∠D,∠OED=∠BEF
∴∠BFE=∠EOD=60°
故答案为:60°(3)直线与直线所夹的锐角与旋转角互补,延长,交于点∵线段绕点顺时针旋转得线段,∴,,∴∴∴∵∴∴∴直线与直线所夹的锐角与旋转角互补;形成结论:旋转图形中,当旋转角小于平角时,对应线段所在直线的夹角与旋转角相等或互补;(4)将绕点顺时针旋转,使得与重合,得到,连接,延长,交于点,∴旋转角为,∴,,,∴△BDF是等边三角形,∵,,∴,∴.【题目点拨】本题是三角形综合题,考查了旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质等知识,添加辅助线构造全等三角形是本题的关键.21、(1)每箱应降价50元,可使每天销售饮料获利14000元.(2)获利不能达到15000元.【解题分析】
(1)此题利用的数量关系:销售每箱饮料的利润×销售总箱数=销售总利润,由此列方程解答即可;
(2)根据题意列出方程,然后用根的判别式去验证.【题目详解】(1)要使每天销售饮料获利14000元,每箱应降价x元,依据题意列方程得,(120−x)(100+2x)=14000,整理得x2−70x+1000=0,解得x1=20,x2=50;∵为了多销售,增加利润,∴x=50答:每箱应降价50元,可使每天销售饮料获利14000元.
(2)由题意得:(120−x)(100+2x)=1500,整理得x2−70x+1500=0,∵△=702−4×1500<0∴方程无解,∴获利不能达到15000元.【题目点拨】考核知识点:一元二次方程的应用.理解题意,列出方程是关键.22、(1)详见解析;(2)详见解析;(3)详见解析;【解题分析】
(1)以AB、BC为邻边作平行四边形即可;(2)作点B关于直线AC的对称点D,然后连接AD、CD即可;(3)以AB、BC为邻边作菱形即可.【题目详解】(1)解:如图:(2)解:如图:(3)解:如图:【题目点拨】本题考查了轴对称和中心对称作图.根据已知条件准确构造符合条件的图形是解答本题的关键.23、(1)反比例函数解析式为:y=;(2)P(5,0);(3)Q点坐标为:(,0).【解题分析】试题分析:(1)利用已知点B坐标代入一次函数解析式得出答案,再利用△OBM的面积得出M点纵坐标,再利用相似三角形的判定与性质得出M点坐标即可得出反比例函数解析式;(2)过点M作PM⊥AM,垂足为M,得出△AOB∽△PMB,进而得出BP的长即可得出答案;(3)利用△QBM∽△OAM,得出=,进而得出OQ的长,即可得出答案.解:(1)如图1,过点M作MN⊥x轴于点N,∵一次函数y=k1x﹣1的图象经过A(0,﹣1)、B(1,0)两点,∴0=k1﹣1,AO=BO=1,解得:k1=1,故一次函数解析式为:y=x﹣1,∵△OBM的面积为1,BO=1,∴M点纵坐标为:2,∵∠OAB=∠MNB,∠OBA=∠NBM,∴△AOB∽△MNB,∴==,则BN=2,故M(3,2),则xy=k2=6,故反比例函数解析式为:y=;(2)如图2,过点M作PM⊥AM,垂足为M,∵∠AOB=∠PMB,∠OBA=∠MBP,∴△AOB∽△PMB,∴=,由(1)得:AB==,BM==2,故=,解得:BP=4,故P(5,0);(3)如图3,∵△QBM∽△OAM,∴=,由(2)可得AM=3,故=,解得:QB=,则OQ=,故Q点坐标为:(,0).考点:反比例函数综合题.24、(1)证明见解析;(2)证明见解析.【解题分析】
(1)根据题意可得△DFC≌△AFB,△AGB≌△ADG,可得∠ADG=∠DCF
(2)由题意可证CF⊥DG,由∠CHD=∠COD=90°,则D,F,O,C四点共圆,可得∠CDO=∠CHO=45°,可证OH平分∠CHG.【题目详解】(1)∵四边形ABCD是正方形∴AB=AD=CD=BC,∠CDA=∠DAB=90°,∠DAC=∠CAB=45°,AC⊥BD∵DC=AB,DF=AE,∠CDA=∠DAB=90°∴△DFC≌△AEB∴∠ABE=∠DCF∵AG=AG,AB=AD,∠DAC=∠CAB=45°∴△ADG≌△ABG∴∠ADG=∠ABE∴∠DCF=∠ADG(2)∵∠DCF=∠ADG,且∠ADG+∠CDG=90°∴∠DCF+∠CDG=90°∴∠CHD=∠CHG=90°∵∠CHD=∠COD∴C,D,H,O四点共圆∴∠CHO=∠CDO=45°∴∠GHO=∠CHO=45°∴HO平分∠CHG【题目点拨】本题考查了正方形的性质,全等三角形的判定和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度住宅小区车位维修保养合同范本3篇
- 2024物流转包商服务质量评价体系合同
- 2024牛肉产业技术创新与研发合作合同
- 2025年度大理石石材工程环保评估与施工合同3篇
- 2025年度新能源项目打桩工程合作合同4篇
- 2025年度智能窗帘控制系统研发与集成承包合同4篇
- 2024年电商平台运营服务外包合同
- 2024版项目股权出售合同:公司权益转让协议
- 2025年度新能源电池产品进出口合同4篇
- 2025年度房地产租赁权转让合同3篇
- 服装板房管理制度
- 2024年县乡教师选调进城考试《教育学》题库及完整答案(考点梳理)
- 车借给别人免责协议书
- 河北省兴隆县盛嘉恒信矿业有限公司李杖子硅石矿矿山地质环境保护与治理恢复方案
- 第七章力与运动第八章压强第九章浮力综合检测题(一)-2023-2024学年沪科版物理八年级下学期
- 医疗机构诊疗科目名录(2022含注释)
- 微视频基地策划方案
- 光伏项目质量评估报告
- 八年级一本·现代文阅读训练100篇
- 2023年电池系统测试工程师年度总结及下一年计划
- 应急预案评分标准表
评论
0/150
提交评论