浙江省东阳市2024届数学八年级第二学期期末教学质量检测模拟试题含解析_第1页
浙江省东阳市2024届数学八年级第二学期期末教学质量检测模拟试题含解析_第2页
浙江省东阳市2024届数学八年级第二学期期末教学质量检测模拟试题含解析_第3页
浙江省东阳市2024届数学八年级第二学期期末教学质量检测模拟试题含解析_第4页
浙江省东阳市2024届数学八年级第二学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省东阳市2024届数学八年级第二学期期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.在平面直角坐标系中,把△ABC先沿x轴翻折,再向右平移3个单位,得到△A1B1C1,把这两步操作规定为翻移变换,如图,已知等边三角形ABC的顶点B,C的坐标分别是(1,1),(3,1).把△ABC经过连续3次翻移变换得到△A3B3C3,则点A的对应点A3的坐标是()A.(5,﹣) B.(8,1+) C.(11,﹣1﹣) D.(14,1+)2.把函数向上平移3个单位,下列在该平移后的直线上的点是()A. B. C. D.3.已知下列图形中的三角形顶点都在正方形网格的格点上,图中的三角形是直角三角形的是()A. B.C. D.4.某人出去散步,从家里出发,走了20min,到达一个离家900m的阅报亭,看了10min报纸后,用了15min返回家里,下面图象中正确表示此人离家的距离y(m)与时间x(min)之家关系的是()A. B.C. D.5.一次函数y=﹣3x+5的图象不经过的象限是第()象限A.一B.二C.三D.四6.函数中自变量x的取值范围是()A.x≥1B.x≤1C.x≠1D.x>17.直线不经过【】A.第一象限B.第二象限C.第三象限D.第四象限8.下列计算正确的是()A.+= B.÷=C.2×3=6 D.﹣2=﹣9.下列函数:①;②;③;④;⑤.其中,是一次函数的有()A.1个 B.2个 C.3个 D.4个10.以下列各组数为边长首尾相连,能构成直角三角形的一组是()A.4,5,6 B.1,3,2 C.5,12,15 D.6,8,1411.若一次函数的函数图像不经过第()象限.A.一 B.二 C.三 D.四12.如图,在四边形ABCD中,已知AB=CD,M、N、P分别是AD、BC、BD的中点∠ABD=20°,∠BDC=70°,则∠NMP的度数为()A.50° B.25° C.15° D.20二、填空题(每题4分,共24分)13.甲、乙两名同学的5次射击训练成绩(单位:环)如下表.甲78988乙610978比较甲、乙这5次射击成绩的方差S甲1,S乙1,结果为:S甲1_____S乙1.(选填“>”“=”或“<“)14.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是_____.15.如图,已知反比例函数的图象经过点,若在该图象上有一点,使得,则点的坐标是_______.16.廖老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如下表:时间(单位:小时)432l0人数34111则这10名学生周末利用网络进行学习的平均时间是________小时.17.如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)18.化简得_____________.三、解答题(共78分)19.(8分)如图,已知是线段的中点,,且,试说明的理由.20.(8分)如图所示,四边形ABCD是平行四边形,已知DE平分∠ADC,交AB于点E,过点E作EF∥AD,交DC于F,求证:四边形AEFD是菱形.21.(8分)如图,在平面直角坐标系xOy中,一次函数的图象与正比例函数的图象交于点A(2,m),一次函数的图象分别与x轴、y轴交于B、C两点.(1)求m、k的值;(2)求∠ACO的度数和线段AB的长.22.(10分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.23.(10分)我们给出如下定义:把对角线互相垂直的四边形叫做“正交四边形”.如图1,在四边形ABCD中,AC⊥BD,四边形ABCD就是“正交四边形”.(1)下列四边形,一定是“正交四边形”的是______.①平行四边形②矩形③菱形④正方形(2)如图2,在“正交四边形”ABCD中,点E、F、G、H(3)小明说:“计算‘正交四边形’的面积可以仿照菱形的方法,面积是对角线之积的一半.”小明的说法正确吗?如果正确,请给出证明;如果错误,请给出反例.24.(10分)如图1,在△ABC中,AB=AC,∠ABC=α,D是BC边上一点,以AD为边作△ADE,使AE=AD,∠DAE+(1)直接写出∠ADE的度数(用含α的式子表示);(2)以AB,AE为边作平行四边形ABFE,①如图2,若点F恰好落在DE上,求证:BD=CD;②如图3,若点F恰好落在BC上,求证:BD=CF.25.(12分)某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况,并统计绘制成了如图两幅不完整的条形统计图和扇形统计图,请根据所提供的信息,解答下列问题:(1)本次共抽查学生人,并将条形图补充完整;(2)捐款金额的众数是,中位数是;(3)在八年级850名学生中,捐款20元及以上(含20元)的学生估计有多少人?26.已知,一次函数y=(1-3k)x+2k-1,试回答:(1)k为何值时,y随x的增大而减小?(2)k为何值时,图像与y轴交点在x轴上方?(3)若一次函数y=(1-3k)x+2k-1经过点(3,4).请求出一次函数的表达式.

参考答案一、选择题(每题4分,共48分)1、C【解题分析】

首先把△ABC先沿x轴翻折,再向右平移3个单位得到△ABC得到点A的坐标为(2+3,-1-),同样得出A的坐标为(2+3+3,1+),…由此得出A的坐标为(2+3x5,-1-),进一步选择答案即可【题目详解】∵把△ABC先沿x轴翻折,再向右平移3个单位得到△A1B1C1得到点A1的坐标为(2+3,﹣1﹣),同样得出A2的坐标为(2+3+3,1+),…A3的坐标为(2+3×3,﹣1﹣),即(11,﹣1﹣).故选:C.【题目点拨】此题考查坐标与图形变化-对称,坐标与图形变化平移和规律型:点的坐标,解题关键在于找到规律2、D【解题分析】【分析】根据直线平移的规律得到平移后的直线解析式,然后把x=2代入平移后的解析式即可作出判断.【题目详解】由“上加下减”的原则可知,将直线y=x向上平移3个单位后,所得直线的表达式是y=x+3,当x=2时,y=x+3=2+3=5,所以点(2,5)在平移后的直线上,故选D.【题目点拨】本题考查了一次函数的平移以及一次函数图象上点的坐标特征,熟知函数图象平移的法则是解答此题的关键.3、D【解题分析】

根据勾股定理求出三角形的三边,然后根据勾股定理的逆定理即可判断.【题目详解】由勾股定理可得:A、三角形三边分别为3、,2;B、三角形三边分别为、,2;C、三角形三边分别为、2,3;D、三角形三边分别为2、,;∵D图中(2)2+()2=()2,其他三角形不符合勾股定理逆定理,∴图中的三角形是直角三角形的是D,故选:D.【题目点拨】此题考查了勾股定理和勾股定理逆定理的运用,本题中根据勾股定理计算三角形的三边长是解题的关键.4、D【解题分析】试题分析:由于某人出去散步,从家走了20分钟,到一个离家900米的阅报亭,并且看报纸10分钟,这是时间在加长,而离家的距离不变,再按原路返回用时15分钟,离家的距离越来越短,由此即可确定表示张大伯离家时间与距离之间的关系的函数图象.解:依题意,0~20min散步,离家路程从0增加到900m,20~30min看报,离家路程不变,30~45min返回家,离家从900m路程减少为0m,且去时的速度小于返回的速度,故选D.【点评】此题主要考查了函数图象,利用图象信息隐含的数量关系确定所需要的函数图象是解答此题的关键.5、C【解题分析】

由k<0,可得一次函数经过二、四象限,再由b>0,一次函数经过第一象限,即可得到直线不经过的象限.【题目详解】∵直线y=﹣3x+5经过第一、二、四象限,∴不经过第三象限,故选C.【题目点拨】本题考查了一次函数图象与系数的关系:①k>0,b>0⇔y=kx+b的图象在一、二、三象限;②k>0,b<0⇔y=kx+b的图象在一、三、四象限;③k<0,b>0⇔y=kx+b的图象在一、二、四象限;④k<0,b<0⇔y=kx+b的图象在二、三、四象限.6、A【解题分析】试题分析:当x+1≥0时,函数有意义,所以x≥1,故选:A.考点:函数自变量的取值范围.7、B。【解题分析】一次函数图象与系数的关系。【分析】∵,∴∴的图象经过第一、三、四象限,不经过第二象限。故选B。8、D【解题分析】

直接利用二次根式混合运算法则计算得出答案.【题目详解】解:A、+,无法计算,故此选项错误;B、÷=,故此选项错误;C、2×3=18,故此选项错误;D、﹣2=﹣,正确.故选D.【题目点拨】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.9、C【解题分析】

根据一次函数的定义逐一判断即可.【题目详解】①是一次函数;②是一次函数;③是一次函数;④不是一次函数;⑤不是一次函数.故选C.【题目点拨】此题考查的是一次函数的判断,掌握一次函数的定义是解决此题的关键.10、B【解题分析】

如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.【题目详解】解:A、42B、12C、52D、62故选择:B.【题目点拨】本题主要考查了勾股定理的逆定理的运用,解题时注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.11、D【解题分析】

根据k=5>0,函数图像经过一、三象限,b=1>0,函数图像与y轴的正半轴相交,即可进行判断.【题目详解】根据k=5>0,函数图像经过第一、三象限,b=1>0,函数图像与y轴的正半轴相交,则一次函数的函数图像过第一、二、三象限,不过第四象限,故选D.【题目点拨】本题主要考查了一次函数图像的性质,熟练掌握一次函数图像与系数的关系是解决本题的关键.12、B【解题分析】

根据中位线定理和已知,易证明△PMN是等腰三角形,根据等腰三角形的性质和已知条件即可求出∠PMN的度数.【题目详解】在四边形ABCD中,∵M、N、P分别是AD、BC、BD的中点,∴PN,PM分别是△CDB与△DAB的中位线,∴PM=12AB,PN=12DC,PM∥AB,∵AB=CD,∴PM=PN,∴△PMN是等腰三角形,∴∠PMN=∠PNM.∵PM∥AB,PN∥DC,∴∠MPD=∠ABD=20°,∠BPN=∠BDC=70°,∴∠MPN=∠MPD+∠NPD=20°+(180﹣70)°=130°,∴∠PMN=180°-130°2故选B.【题目点拨】本题考查了三角形中位线定理及等腰三角形的判定和性质,解题时要善于根据已知信息,确定应用的知识.二、填空题(每题4分,共24分)13、<【解题分析】

首先求出各组数据的平均数,再利用方差公式计算得出答案.【题目详解】,,,,则﹤.故答案为:﹤.【题目点拨】此题主要考查了方差,正确掌握方差计算公式是解题关键.14、(2,-1).【解题分析】试题分析:如图,根据A(-2,1)和B(-2,-3)确定平面直角坐标系,然后根据点C在坐标系中的位置确定点C的坐标为(2,-1).考点:根据点的坐标确定平面直角坐标系.15、【解题分析】

作AE⊥y轴于E,将线段OA绕点O顺时针旋转90°得到OA′,作A′F⊥x轴于F,则△AOE≌△A′OF,可得OF=OE=4,A′F=AE=3,即A′(4,-3),求出线段AA′的中垂线的解析式,利用方程组确定交点坐标即可.【题目详解】解:如图,作AE⊥y轴于E,将线段OA绕点O顺时针旋转90°得到OA′,作A′F⊥x轴于F,则△AOE≌△A′OF,可得OF=OE=5,A′F=AE=4,即A′(5,-4).∵反比例函数的图象经过点A(4,5),所以由勾股定理可知:OA=,∴k=4×5=20,∴y=,∴AA′的中点K(),∴直线OK的解析式为y=x,由,解得或,∵点P在第一象限,∴P(),故答案为().【题目点拨】本题考查反比例函数图象上点的坐标特征,一次函数的应用等知识,解题的关键是学会构造全等三角形解决问题,学会构建一次函数,利用方程组确定交点坐标,属于中考填空题中的压轴题.16、2.1【解题分析】

依据加权平均数的概念求解可得.【题目详解】解:这10名学生周末利用网络进行学习的平均时间是:;故答案为:2.1.【题目点拨】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.17、∠B=∠1或【解题分析】

此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.【题目详解】此题答案不唯一,如∠B=∠1或.∵∠B=∠1,∠A=∠A,∴△ADE∽△ABC;∵,∠A=∠A,∴△ADE∽△ABC;故答案为∠B=∠1或【题目点拨】此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似,要注意正确找出两三角形的对应边、对应角,根据判定定理解题.18、【解题分析】

利用二次根式的性质进行化简即可.【题目详解】解:.故答案为.点睛:本题考查了二次根式的化简.熟练应用二次根式的性质对二次根式进行化简是解题的关键.三、解答题(共78分)19、见解析【解题分析】

根据中点定义求出AC=CB,两直线平行,同位角相等,求出∠ACD=∠B,然后证明△ACD和△CBE全等,再利用全等三角形的对应角相等进行解答.【题目详解】解:∵C是AB的中点,

∴AC=CB(线段中点的定义).)

∵CD∥BE(已知),

∴∠ACD=∠B(两直线平行,同位角相等).在△ACD和△CBE中,∴△ACD≌△CBE(SAS).

∴∠D=∠E(全等三角形的对应角相等).【题目点拨】本题主要考查了全等三角形的判定与全等三角形的性质,确定用SAS定理进行证明是关键.20、详见解析.【解题分析】

首先判定四边形AEFD是平行四边形,然后证明DF=EF,进而证明出四边形AEFD是菱形.【题目详解】∵四边形ABCD是平行四边形,∴AB∥CD,∵EF∥AD,∴四边形AEFD是平行四边形,∵DE平分∠ADC,∴∠1=∠2,∵EF∥AD,∴∠1=∠DEF,∴∠2=∠DEF,∴DF=EF,∵四边形AEFD是平行四边形,∴四边形AEFD是菱形.【题目点拨】本题主要考查菱形的判定定理,掌握邻边相等的平行四边形是菱形是解题的关键.21、(1)m=4,k=2;(2)∠ACO=45°,AB.【解题分析】

(1)将点A(2,m)代入y=-x+6可得m的值,再将所得点A坐标代入y=kx可得k;

(2)先求得点B、C的坐标,从而得出△OBC是等腰直角三角形,据此知∠ACO=45°,根据勾股定理可得AB的长.【题目详解】解:(1)把A(2,m)代入y=-x+6得:m=-2+6=4,

把A(2,4)代入y=kx得4=2k,解得k=2;

(2)由y=-x+6可得B(6,0)、C(0,6),

∴OB=OC=6,

∴△OBC是等腰直角三角形,

∴∠ACO=45°.

设AD⊥x轴于点D,AE⊥y轴于点E,

则AD=4,BD=OB-OD=6-2=4,

在Rt△ABD中,AB=.【题目点拨】本题主要考查了待定系数法求函数解析式,等腰三角形的判定与性质、勾股定理等知识,掌握基本定理是解题的关键.22、(1)D的长为10m;(1)当a≥50时,S的最大值为1150;当0<a<50时,S的最大值为50a﹣a1.【解题分析】

(1)设AB=xm,则BC=(100﹣1x)m,利用矩形的面积公式得到x(100﹣1x)=450,解方程求得x1=5,x1=45,然后计算100﹣1x后与10进行大小比较即可得到AD的长;(1)设AD=xm,利用矩形面积可得S=x(100﹣x),配方得到S=﹣(x﹣50)1+1150,根据a的取值范围和二次函数的性质分类讨论:当a≥50时,根据二次函数的性质得S的最大值为1150;当0<a<50时,则当0<x≤a时,根据二次函数的性质得S的最大值为50a﹣a【题目详解】(1)设AB=xm,则BC=(100﹣1x)m,根据题意得x(100﹣1x)=450,解得x1=5,x1=45,当x=5时,100﹣1x=90>10,不合题意舍去;当x=45时,100﹣1x=10,答:AD的长为10m;(1)设AD=xm,∴S=x(100﹣x)=﹣(x﹣50)1+1150,当a≥50时,则x=50时,S的最大值为1150;当0<a<50时,则当0<x≤a时,S随x的增大而增大,当x=a时,S的最大值为50a﹣a1,综上所述,当a≥50时,S的最大值为1150;当0<a<50时,S的最大值为50a﹣a1.【题目点拨】本题考查了一元二次方程及二次函数的应用.解决第(1)问时,要注意根据二次函数的性质并结合a的取值范围进行分类讨论,这也是本题的难点.23、(1)③④;(2)详见解析;(3)小明的说法正确.【解题分析】

(1)由特殊四边形的性质,可知菱形和正方形的对角线互相垂直;(2)首先根据三角形中位线定理和平行四边形的判定定理证明四边形EFGH是平行四边形,然后再证明HG⊥HE即可;(3)由S四边形【题目详解】答:(1)③④(2)证明:∵H、G分别是AD、CD∵E、F分别是AB、CB∴HG∥EF,HG=EF.∴四边形EFGH是平行四边形∵E、H分别是∴EH∥BD∵四边形ABCD是“正交四边形”∴AC⊥BD∴HG⊥HE∴四边形EFGH是矩形(3)答:小明的说法正确.证明:S=【题目点拨】此题考查中点四边形,矩形的判定,解题关键在于得出HG⊥HE.24、(1)α;(2)证明见解析.【解题分析】试题分析:(1)由在△ABC中,AB=AC,∠ABC=α,可求得∠BAC=180°-2α,又由AE=AD,∠DAE+∠BAC=180°,可求得∠DAE=2α,继而求得∠ADE的度数;(2)①由四边形ABFE是平行四边形,易得∠EDC=∠ABC=α,则可得∠ADC=∠ADE+∠EDC=90°,证得AD⊥BC,又由AB=AC,根据三线合一的性质,即可证得结论;②由在△ABC中,AB=AC,∠ABC=α,可得∠B=∠C=α,四边形ABFE是平行四边形,可得AE∥BF,AE=BF.即可证得:∠EAC=∠C=α,又由(1)可证得AD=CD,又由AD=AE=BF,证得结论.试题解析:(1)∠ADE=90°-α.(2)①证明:∵四边形ABFE是平行四边形,∴AB∥EF.∴∠EDC=∠ABC=α.由(1)知,∠ADE=90°-α,∴∠ADC=∠ADE+∠EDC=90°.∴AD⊥BC.∵AB=AC,∴BD=CD.②证明:∵AB=AC,∠ABC=α,∴∠C=∠B=α.∵四边形ABFE是平行四边形,∴AE∥BF,AE=BF.∴∠EAC=∠C=α.由(1)知,∠DAE=2α,∴∠DAC=α.∴∠DAC=∠C.∴AD=CD.∵AD=AE=BF,∴BF=CD.∴BD=CF.考点:1.平行四边形的判定与性质;2.等腰三角形的性质.25、(1)10,将条形图补充完整见解析;(2)众数是10,中位数是12.1;(3)捐款20元及以上(含20元)的学

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论