空间自相关统计量及空间中直线与直线之间的位置关系(附答案)_第1页
空间自相关统计量及空间中直线与直线之间的位置关系(附答案)_第2页
空间自相关统计量及空间中直线与直线之间的位置关系(附答案)_第3页
空间自相关统计量及空间中直线与直线之间的位置关系(附答案)_第4页
空间自相关统计量及空间中直线与直线之间的位置关系(附答案)_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

空间自相关的测度指标1全局空间自相关全局空间自相关是对属性值在整个区域的空间特征的描述ADDINNE.Ref.{66AF2D7B-6765-4F6A-BD2E-D8ABE91BA3AD}[8]。表示全局空间自相关的指标和方法很多,主要有全局Moran’sI、全局Geary’sC和全局Getis-OrdG[3,5]都是通过比较邻近空间位置观察值的相似程度来测量全局空间自相关的。全局Moran’sI 全局Moran指数I的计算公式为: 其中,n为样本量,即空间位置的个数。xi、xj是空间位置i和j的观察值,wij表示空间位置i和j的邻近关系,当i和j为邻近的空间位置时,wij=1;反之,wij=0。全局Moran指数I的取值范围为[-1,1]。 对于Moran指数,可以用标准化统计量Z来检验n个区域是否存在空间自相关关系,Z的计算公式为:=E(Ii)和VAR(Ii)是其理论期望和理论方差。数学期望EI=-1/(n-1)。当Z值为正且显著时,表明存在正的空间自相关,也就是说相似的观测值(高值或低值)趋于空间集聚;当Z值为负且显著时,表明存在负的空间自相关,相似的观测值趋于分散分布;当Z值为零时,观测值呈独立随机分布。全局Geary’sC全局Geary’sC测量空间自相关的方法与全局Moran’sI相似,其分子的交叉乘积项不同,即测量邻近空间位置观察值近似程度的方法不同,其计算公式为: 全局Moran’sI的交叉乘积项比较的是邻近空间位置的观察值与均值偏差的乘积,而全局Geary’sC比较的是邻近空间位置的观察值之差,由于并不关心xi是否大于xj,只关心xi和xj之间差异的程度,因此对其取平方值。全局Geary’sC的取值范围为[0,2],数学期望恒为1。当全局Geary’sC的观察值<1,并且有统计学意义时,提示存在正空间自相关;当全局Geary’sC的观察值>1时,存在负空间自相关;全局Geary’sC的观察值=1时,无空间自相关。其假设检验的方法同全局Moran’sI。值得注意的是,全局Geary’sC的数学期望不受空间权重、观察值和样本量的影响,恒为1,导致了全局Geary’sC的统计性能比全局Moran’sI要差,这可能是全局Moran’sI比全局Geary’sC应用更加广泛的原因。全局Geti-OrdG全局Getis-OrdG与全局Moran’sI和全局Geary’sC测量空间自相关的方法相似,其分子的交叉乘积项不同,即测量邻近空间位置观察值近似程度的方法不同,其计算公式为:全局Getis-OrdG直接采用邻近空间位置的观察值之积来测量其近似程度,与全局Moran’sI和全局Geary’sC不同的是,全局Getis-OrdG定义空间邻近的方法只能是距离权重矩阵wij(d),是通过距离d定义的,认为在距离d内的空间位置是邻近的,如果空间位置j在空间位置i的距离d内,那么权重wij(d)=1,否则为0。从公式中可以看出,在计算全局Getis-OrdG时,如果空间位置i和j在设定的距离d内,那么它们包括在分子中;如果距离超过d,则没有包括在分子中,而分母中则包含了所有空间位置i和j的观察值xi、xj,即分母是固定的。如果邻近空间位置的观察值都大,全局Getis-OrdG的值也大;如果邻近空间位置的观察值都小,全局Getis-OrdG的值也小。因此,可以区分“热点区”和“冷点区”两种不同的正空间自相关,这是全局Getis-OrdG的典型特性,但是它在识别负空间自相关时效果不好。全局Getis-OrdG的数学期望E(G)=W/n(n-1),当全局Getis-OrdG的观察值大于数学期望,并且有统计学意义时,提示存在“热点区”;当全局Getis-OrdG的观察值小于数学期望,提示存在“冷点区”。假设检验方法同全局Moran’sI和全局Geary’sC。2局部空间自相关 局部空间自相关统计量LISA的构建需要满足两个条件ADDINNE.Ref.{5C275B0D-3535-410F-B95D-213C110C5C89}[9]:①局部空间自相关统计量之和等于相应的全局空间自相关统计量;②能够指示每个空间位置的观察值是否与其邻近位置的观察值具有相关性。相对于全局空间自相关而言,局部空间自相关分析的意义在于:①当不存在全局空间自相关时,寻找可能被掩盖的局部空间自相关的位置;②存在全局空间自相关时,探讨分析是否存在空间异质性;③空间异常值或强影响点位置的确定;④寻找可能存在的与全局空间自相关的结论不一致的局部空间自相关的位置,如全局空间自相关分析结论为正全局空间自相关,分析是否存在有少量的负局部空间自相关的空间位置,这些位置是研究者所感兴趣的。由于每个空间位置都有自己的局部空间自相关统计量值,因此,可以通过显著性图和聚集点图等图形将局部空间自相关的分析结果清楚地显示出来,这也是局部空间自相关分析的优势所在[3,5]。局部Moran’sI为了能识别局部空间自相关,每个空间位置的局部空间自相关统计量的值都要计算出来,空间位置为i的局部Moran’sI的计算公式为:局部Moran指数检验的标准化统计量为:E(Ii)和VAR(Ii)是其理论期望和理论方差。局部Moran’sI的值大于数学期望,并且通过检验时,提示存在局部的正空间自相关;局部Moran’sI的值小于数学期望,提示存在局部的负空间自相关。缺点是不能区分“热点区”和“冷点区”两种不同的正空间自相关。局部Geary’sC局部Geary’sC的计算公式为:局部Geary’sC的值小于数学期望,并且通过假设检验时,提示存在局部的正空间自相关;局部Geary’sC的值大于数学期望,提示存在局部的负空间自相关。缺点也是不能区分“热点区”和“冷点区”两种不同的正空间自相关。局部Getis-OrdG局部Getis-OrdG同全局Getis-OrdG一样,只能采用距离定义的空间邻近方法生成权重矩阵,其计算公式为:对统计量的检验与局部Moran指数相似,其检验值为=当局部Getis-OrdG的值大于数学期望,并且通过假设检验时,提示存在“热点区”;当局部Getis-OrdG的值小于数学期望,并且通过假设检验时,提示存在“冷点区”。缺点是识别负空间自相关时效果较差。全局自相关与局部自相关适用性对比分析对于定量资料计算全局空间自相关时,可以使用全局Moran’sI、全局Geary’sC和全局Getis-OrdG统计量。全局空间自相关是对整个研究空间的一个总体描述,仅仅对同质的空间过程有效,然而,由于环境和社会因素等外界条件的不同,空间自相关的大小在整个研究空间,特别是较大范围的研究空间上并不一定是均匀同质的,可能随着空间位置的不同有所变化,甚至可能在一些空间位置发现正空间自相关,而在另一些空间位置发现负空间自相关,这种情况在全局空间自相关分析中是无法发现的,这种现象称为空间异质性。为了能识别这种空间异质性,需要使用局部空间自相关统计量来分析空间自相关性,如局部Moran’sI、局部Geary’sC和局部Getis-OrdG[3,6-7]。全局自相关统计量仅仅为整个研究空间的空间自相关情况提供了一个总体描述,其正确应用的前提是要求同质的空间过程,当空间过程为异质时结论不可靠。为了能正确识别空间异质性,需要应用局部空间自相关统计量。空间中直线与直线之间的位置关系[学习目标]1.会判断空间两直线的位置关系.2.理解两异面直线的定义,会求两异面直线所成的角.3.能用公理4解决一些简单的相关问题.知识点一空间中两条直线的位置关系1.异面直线(1)定义:不同在任何一个平面内的两条直线叫做异面直线.要点分析:①异面直线的定义表明:异面直线不具备确定平面的条件.异面直线既不相交,也不平行.②不能误认为分别在不同平面内的两条直线为异面直线.如图中,虽然有a⊂α,b⊂β,即a,b分别在两个不同的平面内,但是因为a∩b=O,所以a与b不是异面直线.(2)画法:画异面直线时,为了充分显示出它们既不平行也不相交,即不共面的特点,常常需要画一个或两个辅助平面作为衬托,以加强直观性、立体感.如图所示,a与b为异面直线.(3)判断方法方法内容定义法依据定义判断两直线不可能在同一平面内定理法过平面外一点与平面内一点的直线和平面内不经过该点的直线为异面直线(此结论可作为定理使用)反证法假设这两条直线不是异面直线,那么它们是共面直线(即假设两条直线相交或平行),结合原题中的条件,经正确地推理,得出矛盾,从而判定假设“两条直线不是异面直线”是错误的,进而得出结论:这两条直线是异面直线2.空间中两条直线位置关系的分类(1)按两条直线是否共面分类eq\b\lc\{\rc\(\a\vs4\al\co1(共面直线\b\lc\{\rc\(\a\vs4\al\co1(相交直线:同一平面内,有且只有一个公共点,平行直线:同一平面内,没有公共点)),异面直线:不同在任何一个平面内,没有公共点))(2)按两条直线是否有公共点分类eq\b\lc\{\rc\(\a\vs4\al\co1(有且仅有一个公共点——相交直线,无公共点\b\lc\{\rc\(\a\vs4\al\co1(平行直线,异面直线))))思考(1)分别在两个平面内的两条直线一定是异面直线吗?(2)两条垂直的直线必相交吗?答(1)不一定.可能相交、平行或异面.(2)不一定.可能相交垂直,也可能异面垂直.知识点二公理4(平行公理)文字语言平行于同一条直线的两条直线互相平行,这一性质叫做空间平行线的传递性符号语言eq\b\lc\\rc\}(\a\vs4\al\co1(a∥c,b∥c))⇒a∥b图形语言知识点三空间等角定理1.定理文字语言空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.符号语言OA∥O′A′,OB∥O′B′⇒∠AOB=∠A′O′B′或∠AOB+∠A′O′B′=180°图形语言作用判断或证明两个角相等或互补2.推广如果两条相交直线与另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等.思考如果两条直线和第三条直线成等角,那么这两条直线平行吗?答不一定.这两条直线可能相交、平行或异面知识点四异面直线所成的角1.概念:已知两条异面直线a,b,经过空间任一点O作直线a′∥a,b′∥b,我们把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).2.异面直线所成的角θ的取值范围:0°<θ≤90°.3.如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.两条互相垂直的异面直线a,b,记作a⊥b.4.异面直线所成的角的两种求法(1)在空间任取一点O,过点O分别作a′∥a,b′∥b,则a′与b′所成的锐角(或直角)为异面直线a与b所成的角,然后通过解三角形等方法求角.(2)在其中一条直线上任取一点(如在b上任取一点)O,过点O作另一条直线的平行线(如过点O作a′∥a),则两条直线相交所成的锐角(或直角)为异面直线所成的角(如b与a′所成的角),然后通过解三角形等方法求角(如图).题型一空间两条直线的位置关系的判定例1若a和b是异面直线,b和c是异面直线,则a和c的位置关系是()A.平行B.异面C.相交D.平行、相交或异面答案D解析可借助长方体来判断.如图,在长方体ABCD-A′B′C′D′中,A′D′所在直线为a,AB所在直线为b,已知a和b是异面直线,b和c是异面直线,则c可以是长方体ABCD-A′B′C′D′中的B′C′,CC′,DD′.故a和c可以平行、相交或异面.跟踪训练1如图所示,在正方体ABCD-A1B1C1D1中,判断下列直线的位置关系:(1)直线A1B与直线D1C的位置关系是________;(2)直线A1B与直线B1C的位置关系是________;(3)直线D1D与直线D1C的位置关系是________;(4)直线AB与直线B1C的位置关系是________.答案(1)平行(2)异面(2)相交(4)异面解析序号结论理由(1)平行因为A1D1綊BC,所以四边形A1BCD1为平行四边形,所以A1B∥D1C(2)异面A1B与B1C不同在任何一个平面内(3)相交D1D∩D1C=D1(4)异面AB与B1C不同在任何一个平面内题型二公理4、等角定理的应用例2E,F分别是长方体ABCD-A1B1C1D1的棱A1A,C1C的中点,求证:四边形B1EDF是平行四边形.证明设Q是DD1的中点,连接EQ,QC1.因为E是AA1的中点,所以.又因为在矩形A1B1C1D1中,,所以.所以四边形EQC1B1为平行四边形.所以.又因为Q,F分别是矩形DD1C1C两边D1D,C1C的中点,所以.所以四边形DQC1F为平行四边形.所以.又因为,所以.所以四边形B1EDF为平行四边形.跟踪训练2如图,已知E,F,G,H分别是空间四边形ABCD的边AB,BC,CD,DA的中点.(1)求证:E,F,G,H四点共面;(2)若四边形EFGH是矩形,求证:AC⊥BD.证明(1)在△ABD中,∵E,H分别是AB,AD的中点,∴EH∥BD.同理FG∥BD,则EH∥FG.故E,F,G,H四点共面.(2)由(1)知EH∥BD,同理AC∥GH.又∵四边形EFGH是矩形,∴EH⊥GH.故AC⊥BD.题型三异面直线所成的角例3如图所示,在空间四边形ABCD中,AB=CD,AB⊥CD,E,F分别为BC,AD的中点,求EF和AB所成的角.解如图,取BD的中点G,连接EG,FG.因为E,F分别为BC,AD的中点,AB=CD,所以EG∥CD,GF∥AB,且EG=eq\f(1,2)CD,GF=eq\f(1,2)AB.所以∠GFE就是EF与AB所成的角或其补角,EG=GF.因为AB⊥CD,所以EG⊥GF.所以∠EGF=90°.所以△EFG为等腰直角三角形.所以∠GFE=45°,即EF与AB所成的角为45°.跟踪训练3空间四边形ABCD中,AB=CD且AB与CD所成的角为30°,E,F分别为BC,AD的中点,求EF与AB所成角的大小.解取AC的中点G,连接EG,FG,则EGeq\f(1,2)AB,GFeq\f(1,2)CD.故直线GE,EF所成的锐角即为AB与EF所成的角,直线GE,GF所成的锐角即为AB与CD所成的角.∵AB与CD所成的角为30°,∴∠EGF=30°或150°.由AB=CD,知EG=FG,∴△EFG为等腰三角形.当∠EGF=30°时,∠GEF=75°;当∠EGF=150°时,∠GEF=15°.故EF与AB所成的角为15°或75°.转化与化归思想例5在空间四边形ABCD中,AD=BC=2a,E,F分别是AB,CD的中点,EF=eq\r(3)a,求异面直线AD,BC所成的角.分析要求异面直线AD,BC所成的角,可在空间中找一些特殊点,将AD,BC平移至一个三角形中.此题已知E,F分别为AB,CD的中点,故可寻找一边中点,如BD的中点M,则∠EMF(或其补角)为所求角.解如图,取BD的中点M.由题意,知EM为△BAD的中位线,所以EM∥AD且EM=eq\f(1,2)AD.同理,MF∥BC且MF=eq\f(1,2)BC.所以EM=a,MF=a,且∠EMF(或其补角)为所求角.在等腰△MEF中,取EF的中点N,连接MN,则MN⊥EF.又因为EF=eq\r(3)a,所以EN=eq\f(\r(3),2)a.故有sin∠EMN=eq\f(EN,EM)=eq\f(\r(3),2).所以∠EMN=60°,所以∠EMF=2∠EMN=120°.因为∠EMF=120°>90°,所以AD,BC所成的角为∠EMF的补角,即AD和BC所成的角为60°.反证法的合理应用例6如图,三棱锥P-ABC中,E是PC上异于点P的点.求证:AE与PB是异面直线.分析利用定义直接证明,即从不同在任何一个平面内中的“任何”开始入手,一个平面一个平面地寻找是不可能实现的,因此必须找到一个间接证法来证明,反证法即是一种行之有效的方法.证明假设AE与PB不是异面直线,设AE与PB都在平面α内,因为P∈α,E∈α,所以PE⊂α.又因为C∈PE,所以C∈α.所以点P,A,B,C都在平面α内.这与P,A,B,C不共面(P-ABC是三棱锥)矛盾.于是假设不成立,所以AE与PB是异面直线.1.若空间两条直线a和b没有公共点,则a与b的位置关系是()A.共面B.平行C.异面D.平行或异面2.一条直线与两条异面直线中的一条平行,则它和另一条的位置关系是()A.平行或异面B.相交或异面C.异面D.相交3.设P是直线l外一定点,过点P且与l成30°角的异面直线()A.有无数条B.有两条C.至多有两条D.有一条4.如图所示,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________.(填序号)5.在正方体ABCD-A1B1C1D1中,E为C1D1的中点,则异面直线AE与A1B1所成角的余弦值为________.一、选择题1.分别和两条异面直线平行的两条直线的位置关系是()A.一定平行 B.一定相交C.一定异面 D.相交或异面2.已知空间两个角α,β,α与β的两边对应平行,且α=60°,则β等于()A.60°B.120°C.30°D.60°或120°3.在正方体ABCD-A1B1C1D1中,异面直线BA1与CC1所成的角为()A.30°B.45°C.60°D.90°4.下面四种说法:①若直线a、b异面,b、c异面,则a、c异面;②若直线a、b相交,b、c相交,则a、c相交;③若a∥b,则a、b与c所成的角相等;④若a⊥b,b⊥c,则a∥c.其中正确的个数是()A.4B.3C.2D.15.空间四边形的对角线互相垂直且相等,顺次连接这个四边形各边中点,所组成的四边形是()A.梯形B.矩形C.平行四边形D.正方形6.若空间四边形ABCD的两条对角线AC,BD的长分别是8,12,则过AB的中点E且平行于BD,AC的截面四边形的周长为()A.10B.20C.8D.47.如图,三棱柱ABCA1B1C1中,底面三角形A1B1C1是正三角形,E是BC的中点,则下列叙述正确的是()A.CC1与B1E是异面直线B.C1C与AE共面C.AE与B1C1是异面直线D.AE与B1C1所成的角为60°二、填空题8.在四棱锥P-ABCD中,各棱所在的直线互相异面的有________对.9.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB⊥EF;②AB与CM所成的角为60°;③EF与MN是异面直线;④MN∥CD.以上结论中正确的序号为________.10.如图所示,在正方体ABCD-A1B1C1D1中,异面直线A1B与AD1所成的角为______.三、解答题11.如图所示,等腰直角三角形ABC中,∠BAC=90°,BC=eq\r(2),DA⊥AC,DA⊥AB,若DA=1,且E为DA的中点,求异面直线BE与CD所成角的余弦值.12.如图,E,F,G,H分别是空间四边形ABCD各边上的点,且有AE∶EB=AH∶HD=m,CF∶FB=CG∶GD=n.(1)证明:E,F,G,H四点共面;(2)m,n满足什么条件时,四边形EFGH是平行四边形?(3)在(2)的条件下,若AC⊥BD,试证明:EG=FH.当堂检测答案1.答案D解析若直线a和b共面,则由题意可知a∥b;若a和b不共面,则由题意可知a与b是异面直线.2.答案B解析如图,在正方体ABCD-A1B1C1D1中,AA1与BC是异面直线,又AA1∥BB1,AA1∥DD1,显然BB1∩BC=B,DD1与BC是异面直线,故选B.3.答案A解析我们现在研究的平台是锥空间.如图所示,过点P作直线l′∥l,以l′为轴,与l′成30°角的圆锥面的所有母线都与l成30°角.4.答案②④解析①中,∵G,M是中点,∴AG綊BM,∴GM綊AB綊HN,∴GH∥MN,即G,H,M,N四点共面;②中,∵H,G,N三点共面,且都在平面HGN内,而点M显然不在平面HGN内,∴H,G,M,N四点不共面,即GH与MN异面;③中,∵G,M是中点,∴GM綊eq\f(1,2)CD,∴GM綊eq\f(1,2)HN,即GMNH是梯形,则HG,MN必相交,∴H,G,M,N四点共面;④中,同②,G,H,M,N四点不共面,即GH与MN异面.5.答案eq\f(1,3)解析设棱长为1,因为A1B1∥C1D1,所以∠AED1就是异面直线AE与A1B1所成的角.在△AED1中,cos∠AED1=eq\f(D1E,AE)=eq\f(\f(1,2),\f(3,2))=eq\f(1,3).课时精练答案一、选择题1.答案D解析可能相交也可能异面,但一定不平行(否则与条件矛盾).2.答案D解析由等角定理,知β与α相等或互补,故β=60°或120°.3.答案B解析如图,在正方体ABCD-A1B1C1D1中,BB1∥CC1,故∠B1BA1就是异面直线BA1与CC1所成的角,故为45°.4.答案D解析若a、b异面,b、c异面,则a、c相交、平行、异面均有可能,故①不对.若a、b相交,b、c相交,则a、c相交、平行、异面均有可能,故②不对.若a⊥b,b⊥c,则a、c平行、相交、异面均有可能,故④不对.③正确.5.答案D解析如图,因为BD⊥AC,且BD=AC,又因为E,F,G,H分别为对应边的中点,所以FGEHeq\f(1,2)BD,HGEFeq\f(1,2)AC.所以FG⊥HG,且FG=HG.所以四边形EFGH为正方形.6.答案B解析设截面四边形为EFGH,E,F,G,H分别是AB,BC,CD,DA的中点,∴EF=GH=eq\f(1,2)AC=4,FG=HE=eq\f(1,2)BD=6,∴周长为2×(4+6)=20.7.答案C解析由于CC1与B1E都在平面C1B1BC内,故C1C与B1E是共面的,所以A错误;由于C1C在平面C1B1BC内,而AE与平面C1B1BC相交于E点,点E不在C1C上,故C1C与AE是异面直线,B错误;同理AE与B1C1是异面直线,C正确;而AE与B1C1所成的角就是AE与BC所成的角,E为BC中点,△ABC为正三角形,所以AE⊥

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论