版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
此卷只装订不密封班级此卷只装订不密封班级姓名准考证号考场号座位号数学(A)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。4.考试结束后,请将本试题卷和答题卡一并上交。第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集为,集合,,则()A. B.C. D.2.已知幂函数过点,则在其定义域内()A.为偶函数 B.为奇函数 C.有最大值 D.有最小值3.幂函数在上为增函数,则实数的值为()A. B. C.或 D.4.函数的定义域为()A. B.C. D.5.若函数在上单调递减,则实数的取值范围是()A. B. C. D.6.下面各组函数中是同一函数的是()A.与 B.与C.与 D.与7.函数,,则函数的图象大致()A. B.C. D.8.,,则的值为()A. B. C. D.9.若函数在区间内单调递增,则实数的取值范围为()A. B. C. D.10.设函数,若,则实数的值为()A. B. C.或 D.11.已知定义在上的奇函数满足,当时,,则()A. B.C. D.12.已知函数对任意两个不相等的实数,都满足不等式,则实数的取值范围是()A. B. C. D.第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.13.函数的值域为_______.14.函数在是减函数,则实数的取值范围是.15.已知函数,则不等式的解集为__________.16.函数在定义域上单调递增,则的取值范围是______.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)已知集合或,,.(1)求,;(2)若,求实数的取值范围.18.(12分)(1)计算;(2)已知,求的值.19.(12分)已知为上的偶函数,当时,.(1)证明:在单调递增;(2)求的解析式;(3)求不等式的解集.20.(12分)已知函数,.(1)当时,求的值域;(2)若的最小值为,求的值.21.(12分)已知函数.(1)若的定义域为,求的取值范围;(2)若,求的单调区间;(3)是否存在实数,使在上为增函数?若存在,求出的范围;若不存在,说明理由.22.(12分)已知指数函数满足,定义域为的函数是奇函数.(1)确定,的解析式;(2)若对任意,不等式恒成立,求实数的取值范围.20202021学年上学期高一期中备考金卷数学(A)答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B【解析】由题意可得,结合交集的定义可得,故本题选择B选项.2.【答案】A【解析】设幂函数为,代入点,即,∴,,定义域为,为偶函数且,故选A.3.【答案】D【解析】因为函数是幂函数,所以,解得或,因为函数在上为增函数,所以,即,,故选D.4.【答案】D【解析】∵,∴函数的定义域为.5.【答案】C【解析】若函数在上单调递减,则,得,故选C.6.【答案】A【解析】函数与的定义域均为,且,所以两函数对应法则相同,故A正确;函数的定义域为,函数的定义域为,所以两函数不是同一函数,故B错误;函数的定义域为,函数的定义域为,所以两函数不是同一函数,故C错误;函数的定义域为,函数的定义域为,所以两函数不是同一函数,故D错误,故选A.7.【答案】C【解析】∵与都是偶函数,∴也是偶函数,由此可排除A、D,又由时,,可排除B,故选C.8.【答案】C【解析】∵,,∴,,,故选C.9.【答案】C【解析】解不等式,即,解得,内层函数在区间上单调递增,在区间上单调递减,而外层函数在定义域上为减函数,由复合函数法可知,函数的单调递增区间为,由于函数在区间上单调递增,所以,,解得,因此,实数的取值范围是,故选C.10.【答案】B【解析】因为,所以或,所以或,,故选B.11.【答案】B【解析】由题意得,因为,则,所以函数表示以为周期的周期函数,又因为为奇函数,所以,所以,,,所以,故选B.12.【答案】C【解析】因为,所以在上是增函数,令,而是减函数,所以在上单调递减,且在上恒成立,所以,解得,故选C.第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.13.【答案】【解析】由已知得的定义域为,令,,则,所以时,有最大值,的值域为.14.【答案】【解析】因为函数在上是减函数,所以对称轴,即,故答案为.15.【答案】【解析】∵,∴是减函数,且定义域为,∵,∴不等式等价于,∴,解得,∴不等式的解集为,故答案为.16.【答案】【解析】由题意,函数在上是单调递增的,故当时,恒成立,所以,解得,且内外函数的单调性一致,结合对数函数的底数且,可得函数一定为增函数,故外函数也应为增函数,即,综合可得,即实数的取值范围是,故答案为.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1),;(2).【解析】(1),,.(2)∵,∴.①当时,∴,即;②当时,∴,∴,综上所述:的取值范围是.18.【答案】(1);(2).【解析】(1)原式.(2)∵,∴,,故.19.【答案】(1)证明见解析;(2);(3)或.【解析】(1)设,则,由于,有,即,故,∴在单调递增.(2)设,则,由为上的偶函数,知,∴.(3)由为上的偶函数,即有,而在单调递增,∴,解得或,即或.20.【答案】(1);(2).【解析】(1)当时,在上单调递增,故,,所以的值域为.(2),令,,则原函数可化为,其图象的对称轴为.①当时,在上单调递增,所以,解得;②当时,,即,解得,不合题意,舍去;③当时,在上单调递减,所以,解得,不合题意,舍去,综上,的值为.21.【答案】(1);(2)在上为增函数,在上为减函数;(3)不存在实数,详见解析.【解析】(1)∵函数的定义域为,∴恒成立,则,即,解得的取值范围是.(2)∵,∴.则,由,得或.设,对称轴,∴在上为减函数,在上为增函数.根据复合函数单调性规律可判断:在上为增函数,在上为减函数.(3)函数,设,可知在上为减函数,在上为增函数,∵在上为增函数,∴且,且,不可能成立.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房屋买卖合同的二手房买卖合同
- 购销学校帐篷合同书
- 行车安全保障函
- 网络电商合作合同样本
- 临时工合同书
- 电力使用安全责任
- 家用中央空调采购合同
- 软装材料选购协议
- 忠诚守护男友的誓言
- 工程分包合同分项工程
- 第三单元(复习课件)一年级语文上册(统编版2024秋)
- 2024年大学试题(计算机科学)-数字图像处理考试近5年真题集锦(频考类试题)带答案
- 文旅深度融合长期发展规划
- ASTM-D3359-(附著力测试标准)-中文版
- 5 协商决定班级事务 (教学设计)-2024-2025学年道德与法治五年级上册统编版
- 2024年清洁机器人项目合作计划书
- 高校实验室安全通识课学习通超星期末考试答案章节答案2024年
- 银行客户经理招聘面试题与参考回答(某大型集团公司)
- 残疾人体育活动推广与普及考核试卷
- 《安全系统工程》期末考试卷及答案
- 空气动力学仿真技术:计算流体力学(CFD):CFD在飞机设计中的应用
评论
0/150
提交评论