版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省泰兴市洋思中学2024届数学八下期末统考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.下列各式:(1﹣x),,,,其中分式共有()A.1个 B.2个 C.3个 D.4个2.平行四边形所具有的性质是()A.对角线相等B.邻边互相垂直C.每条对角线平分一组对角D.两组对边分别相等3.下列图案,既是轴对称图形又是中心对称图形的个数是().A.1 B.2 C.3 D.44.一组数据1,2,的平均数为2,另一组数据-l,,1,2,b的唯一众数为-l,则数据-1,,,1,2的中位数为()A.-1 B.1 C.2 D.35.如果下列各组数是三角形的三边,则能组成直角三角形的是()A. B. C. D.6.如图,将边长为8㎝的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长是()A.3cm B.4cm C.5cm D.6cm7.下图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形G的边长是6cm,则正方形A,B,C,D,E,F,G的面积之和是()A.18cm2 B.36cm2 C.72cm2 D.108cm28.等腰三角形的两边长分别为2、4,则它的周长为()A.8 B.10 C.8或10 D.以上都不对9.如图,在中,点为的中点,平分,且于点,延长交于点.若,,则的长为()A.5 B.6 C.7 D.810.将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,AB=,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处.则BC的长为()A. B.3 C.2 D.2二、填空题(每小题3分,共24分)11.如图,已知:∠MON=30∘,点A1、A2、A3在射线ON上,点B1、B2、B3...在射线OM上,ΔA1B12.式子有意义,则实数的取值范围是______________.13.如图,在中,,且把的面积三等分,那么_____.14.如图,在锐角△ABC中,AB=4,∠ABC=45°,∠ABC的平分线交AC于点D,点P、Q分别是BD、AB上的动点,则AP+PQ的最小值为______.15.有7个数由小到大依次排列,其平均数是38,如果这组数的前4个数的平均数是33,后4个数的平均数是42,则这7个数的中位数是.16.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.17.如图,将菱形纸片ABCD折叠,使点C,D的对应点C',D'都落在直线AB上,折痕为EF,若EF=1.AC'=8,则阴影部分(四边形ED'BF)的面积为________
。18.某班七个兴趣小组人数分别为4,x,5,5,4,6,7,已知这组数据的平均数是5,则x=________.三、解答题(共66分)19.(10分)某水果店经销进价分别为元/千克、元/千克的甲、乙两种水果,下表是近两天的销售情况:(进价、售价均保持不变,利润=售价-进价)时间甲水果销量乙水果销量销售收入周五千克千克元周六千克千克元(1)求甲、乙两种水果的销售单价;(2)若水果店准备用不多于元的资金再购进两种水果共千克,求最多能够进甲水果多少千克?(3)在(2)的条件下,水果店销售完这千克水果能否实现利润为元的目标?若能,请给出相应的采购方案;若不能,请说明理由.20.(6分)如图,在▱ABCD中,点E、F在BD上,且BF=DE.(1)写出图中所有你认为全等的三角形;(2)延长AE交BC的延长线于G,延长CF交DA的延长线于H(请补全图形),证明四边形AGCH是平行四边形.21.(6分)如图①,在平面直角坐标系中,点,的坐标分别为,,点在直线上,将沿射线方向平移,使点与点重合,得到(点、分别与点、对应),线段与轴交于点,线段,分别与直线交于点,.(1)求点的坐标;(2)如图②,连接,四边形的面积为__________(直接填空);(3)过点的直线与直线交于点,当时,请直接写出点的坐标.22.(8分)如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;(2)写出点A′,B′,C′的坐标:A′,B′,C′;(3)在(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为.23.(8分)如图,已知平行四边形ABCD,(1)=;(用的式子表示)(2)=;(用的式子表示)(3)若AC⊥BD,||=4,||=6,则|+|=.24.(8分)如图,在菱形ABCD中,AC、BD交于点O,AD=15,AO=1.动点P以每秒2个单位的速度从点A出发,沿AC向点C匀速运动.同时,动点Q以每秒1个单位的速度从点D出发,沿DB向点B匀速运动.当其中有一点列达终点时,另一点也停止运动,设运动的时间为t秒.(1)求线段DO的长;(2)设运动过程中△POQ两直角边的和为y,请求出y关于t的函数解析式;(3)请直接写出点P在线段OC上,点Q在线段DO上运动时,△POQ面积的最大值,并写出此时的t值.25.(10分)如图,正方形ABCD中,点E在BC边上,AF平分∠DAE,DF//AE,AF与CD相交于点G.(1)如图1,当∠AEC=,AE=4时,求FG的长;(2)如图2,在AB边上截取点H,使得DH=AE,DH与AF、AE分别交于点M、N,求证:AE=AH+DG26.(10分)已知,如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交与BE的延长线于点F,且AF=DC,连结CF.(1)求证:四边形ADCF是平行四边形;(2)当AB与AC有何数量关系时,四边形ADCF为矩形,请说明理由.
参考答案一、选择题(每小题3分,共30分)1、A【解题分析】
分式即形式,且分母中要有字母,且分母不能为0.【题目详解】本题中只有第五个式子为分式,所以答案选择A项.【题目点拨】本题考查了分式的概念,熟悉理解定义是解决本题的关键.2、D【解题分析】
根据平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行且相等,继而即可得出答案.【题目详解】平行四边形的对角相等,对角线互相平分,对边平行且相等.故选D.【题目点拨】此题考查了平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行且相等;熟记平行四边形的性质是关键.3、C【解题分析】
根据轴对称图形与中心对称图形的概念求解.【题目详解】解:第一个图形是轴对称图形,是中心对称图形;
第二个图形是轴对称图形,不是中心对称图形;
第三个图形是轴对称图形,是中心对称图形;
第四个图形是轴对称图形,是中心对称图形.
共有3个图形既是轴对称图形,也是中心对称图形,
故选:C.【题目点拨】此题主要考查了中心对称图形与轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.4、B【解题分析】试题解析:∵一组数据1,2,a的平均数为2,
∴1+2+a=3×2
解得a=3
∴数据-1,a,1,2,b的唯一众数为-1,
∴b=-1,
∴数据-1,3,1,2,b的中位数为1.
故选B.点睛:中位数就是讲数据按照大小顺序排列起来,形成一个数列,数列中间位置的那个数.5、A【解题分析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形,分析得出即可.【题目详解】A.∵1+=2,∴此三角形是直角三角形,正确;B.∵1+3≠4,∴此三角形不是直角三角形,不符合题意;C.∵2+3≠6,∴此三角形不是直角三角形,不合题意;D.∵4+5≠6,∴此三角形不是直角三角形,不合题意.故选:A.【题目点拨】此题考查勾股定理的逆定理,解题关键在于掌握计算公式.6、A【解题分析】分析:根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8﹣x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长.详解:设CN=xcm,则DN=(8﹣x)cm,由折叠的性质知EN=DN=(8﹣x)cm,而EC=BC=4cm,在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,即(8﹣x)2=16+x2,整理得16x=48,所以x=1.故选:A.点睛:此题主要考查了折叠问题,明确折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题.7、D【解题分析】
根据正方形的面积公式,运用勾股定理可以证明:6个小正方形的面积和等于最大正方形面积的3倍.【题目详解】根据勾股定理得到:A与B的面积的和是E的面积;C与D的面积的和是F的面积;而E,F的面积的和是G的面积.即A、B、C、D、E、F的面积之和为3个G的面积.∵M的面积是61=36cm1,∴A、B、C、D、E、F的面积之和为36×3=108cm1.故选D.【题目点拨】考查了勾股定理,注意运用勾股定理和正方形的面积公式证明结论:6个小正方形的面积和等于最大正方形的面积的1倍.8、B【解题分析】
由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【题目详解】解:①当2为腰时,2+2=4,不能构成三角形,故此种情况不存在;
②当4为腰时,符合题意,则周长是2+4+4=1.
故选:B.【题目点拨】本题考查的是等腰三角形的性质和三边关系,解答此题时注意分类讨论,不要漏解.9、B【解题分析】
根据平分,且可得△ADB≌△ADN,得到BD=DN,AN=AB=4,根据三角形中位线定理求出NC,计算即可.【题目详解】解:∵平分,且∴,在△ADB和△ADN中,∴△ADB≌△ADN(ASA)
∴BD=DN,AN=AB=4,
∵点为的中点,
∴NC=2DM=2,
∴AC=AN+NC=6,
故选B.【题目点拨】本题考查的是三角形中位线定理、全等三角形的判定和性质,三角形的中位线平行于第三边,且等于第三边的一半.10、B【解题分析】试题分析:由三角函数易得BE,AE长,根据翻折和对边平行可得△AEC1和△CEC1为等边三角形,那么就得到EC长,相加即可.解:连接CC1.在Rt△ABE中,∠BAE=30°,AB=,∴BE=AB×tan30°=1,AE=2,∠AEB1=∠AEB=60°,∵四边形ABCD是矩形∴AD∥BC,∴∠C1AE=∠AEB=60°,∴△AEC1为等边三角形,同理△CC1E也为等边三角形,∴EC=EC1=AE=2,∴BC=BE+EC=3,故选B.二、填空题(每小题3分,共24分)11、32a【解题分析】
根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4a,A4B4=8B1A2=8a,A5B5=16B1A2…进而得出答案【题目详解】解:如图∵△A1B1A2是等边三角形,
∴A1B1=A2B1,∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°-120°-30°=30°,
又∵∠3=60°,
∴∠5=180°-60°-30°=90°,
∵∠MON=∠1=30°,
∴OA1=A1B1=a,
∴A2B1=a,
∵△A2B2A3、△A3B3A4是等边三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴A2B2=2B1A2,B3A3=2B2A3,
∴A3B3=4B1A2=4a,
A4B4=8B1A2=8a,
A5B5=16B1A2=16a,
以此类推:A6B6=32B1A2=32a.
故答案为:32a.【题目点拨】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.12、且【解题分析】分析:直接利用二次根式的定义:被开方数大于等于零,分式有意义的条件:分母不为零,分析得出答案.详解:式子有意义,则+1≥0,且-2≠0,解得:≥-1且≠2.故答案:且.点睛:本题主要考查了二次根式有意义的条件及分式有意义的条件.13、【解题分析】
根据相似三角形的判定及其性质,求出线段DE,MN,BC之间的数量关系,即可解决问题.【题目详解】将的面积三等分,设的面积分别为,,,,故答案为:.【题目点拨】本题考查相似三角形的性质,熟练掌握相似三角形的面积比等于相似比的平方是解决问题的关键.14、2【解题分析】
作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.【题目详解】解:作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.
∵BD平分∠ABC,P′H⊥BC,P′Q′⊥AB,
∴P′Q′=P′H,
∴AP′+P′Q′=AP′+P′H=AH,
根据垂线段最短可知,PA+PQ的最小值是线段AH的长,
∵AB=4,∠AHB=90°,∠ABH=45°,
∴AH=BH=2,
故答案为:2.【题目点拨】本题考查的是轴对称-最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.15、34【解题分析】试题解析:解:设这7个数的中位数是x,根据题意可得:,解方程可得:x=34.考点:中位数、平均数点评:本题主要考查了平均数和中位数.把一组数据按照从小到大的顺序或从大到小的顺序排列,最中间的一个或两个数的平均数叫做这组数据的中位数.16、【解题分析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++…+1+=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.17、10【解题分析】
根据对称图形的特点,算出BC和AD'的长,则D'B的长可求,然后过E作EH垂直【题目详解】解:如图,过E作EH⊥AC由对称图形的特征可知:EF=AB=∴A∴A∵AB+B∴B∴B又∵EA=E∴EH=ES故答案为:10【题目点拨】本题考查了菱形的性质,对称的性质及勾股定理,对称的两个图形对应边相等,灵活应用对称的性质求线段长是解题的关键.18、4【解题分析】
根据平均数的定义求出x的值即可.【题目详解】根据题意得,,解得,x=4.故答案为:4.【题目点拨】要熟练掌握平均数的定义以及求法.三、解答题(共66分)19、(1)甲、乙两种水果的销售单价分别为元、元;(2)最多购进甲水果千克时,采购资金不多于元;(3)在(2)的条件下水果店不能实现利润元的目标.【解题分析】
(1)设甲、乙两种水果的销售单价分别为元、元,根据题意找到等量关系进行列二元一次方程组进行求解;(2)设购进甲水果为千克,乙水果千克时采购资金不多于元,根据题意列出不等式即可求解;(3)根据题意找到等量关系列出方程即可求解.【题目详解】解:(1)设甲、乙两种水果的销售单价分别为元、元,依题意得:解得:所以甲、乙两种水果的销售单价分别为元、元(2)设购进甲水果为千克,乙水果千克时采购资金不多于元;根据题意得:.解得:所以最多购进甲水果千克时,采购资金不多于元(3)依题意得:解得:因为,所以在(2)的条件下水果店不能实现利润元的目标.【题目点拨】此题主要考查二元一次方程组的应用,解题的关键是根据题意找到等量关系、不等关系进行列式求解.20、(1)△ABE≌△CDF;△AED≌△CFB;△ABD≌△CDB;(2)详见解析【解题分析】
(1)因为ABCD是平行四边形,AD∥BC,因此∠ADE=∠CBF,又知DE=BF,D=BC那么构成了三角形ADE和CBF全等的条件(SAS)因此△AED≌△CFB.同理可得出△ABE≌△CDF,△ABD≌△CDB.(2)要证明四边形AGCH是个平行四边形,已知的条件有AB∥CD,只要证得AG∥CH即可得出上述结论.那么就需要证明∠AEB=∠DFC,也就是证明△ABE≌△CDF,根据AB∥CD.∴∠ABD=∠CDB.这两个三角形中已知的条件就有AB=CD,BE=DF(BE=DF+EF=DE+EF=DF),又由上面得出的对应角相等,那么两三角形就全等了(SAS).【题目详解】(1)解:△ABE≌△CDF;△AED≌△CFB;△ABD≌△CDB;(2)证明:在△ADE和△CBF中,AD=CB,∠ADE=∠CBF,DE=BF,∴△ADE≌△CBF,∴∠AED=∠CFB.∵∠FEG=∠AED=∠CFB=∠EFH,∴AG‖HC,而且,AH‖GC,∴四边形AGCH是平行四边形【题目点拨】本题考查了全等三角形的判定,平行四边形的性质和判定等知识点,本题中公共全等三角形来得出线段和角相等是解题的关键.21、(1)C(-1,6);(2)24;(3)点N的坐标为(,)或(,);【解题分析】
(1)先求出点E的坐标,根据平移得到OA=CE=4,即可得到点C的坐标;(2)根据图象平移得到四边形的面积等于的面积,根据面积公式计算即可得到答案;(3)根据直线特点求出,tan∠NCE=tan∠POB=,再分两种情况:点N在CE的上方或下方时,分别求出直线CN的解析式得到点N的坐标即可.【题目详解】(1)∵点在直线上,∴m=6,∴E(3,6),由平移得CE=OA=4,∴点C的坐标是(-1,6);(2)由平移得到四边形的面积等于的面积,∴,故答案为:24;(3)由直线y=2x得到:tan∠POB=,当时,tan∠NCE=tan∠POB=,①当点N在CE上方时,直线CE的表达式为:,低昂点C的坐标代入上式并解得:b=,∴直线CN的表达式是y=x+,将上式与y=2x联立并解得:x=,y=,∴N(,);②当点N在CE下方时,直线CE的表达式为:y=-x+,同理可得:点N(,);综上,点N的坐标为(,)或(,).【题目点拨】此题考查函数图象上的点坐标,平行四边形的面积公式,平移的性质,求函数解析式,根据解析式求角的三角函数值,综合掌握各知识点是解题的关键.22、(1)详见解析;(2)A′(3,5),B′(5,5),C′(7,3);(3)点D′的坐标为(2a﹣1,2b﹣1).【解题分析】
(1)利用位似图形的性质得出变化后图形即可;(2)利用已知图形得出对应点坐标;(3)利用各点变化规律,进而得出答案.【题目详解】(1)如图所示:四边形TA′B′C′即为所求;(2)A′(3,5),B′(5,5),C′(7,3);故答案为(3,5),(5,5),(7,3);(3)在(1)中,∵A(2,3),B(3,3),C(4,2),A′(2×2﹣1=3,2×3﹣1=5),B′(2×3﹣1=5,2×3﹣1=5),C′(2×4﹣1=7,2×2﹣1=3);∴D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为(2a﹣1,2b﹣1).故答案为(2a﹣1,2b﹣1).【题目点拨】此题主要考查了位似图形的性质,根据题意得出对应点坐标是解题关键.23、【解题分析】
(1)(2)根据平面向量的加法法则计算即可解决问题;(3)利用勾股定理计算即可;【题目详解】解:(1)=+=﹣;(2)=+=;(3)∵AC⊥BD,||=4,||=6,∴|+|=2.故答案为﹣,,2【题目点拨】此题考查平面向量的加法法则,勾股定理,解题关键在于掌握运算法则24、(1)2(2)见解析(3)当t=152【解题分析】
(1)根据菱形的对角线互相垂直平分的性质得到直角△AOD,在该直角三角形中利用勾股定理来求线段DO的长度;(2)需要分类讨论:点P在线段OA上、点Q在线段OD上;点P在线段OC上,点Q在线段OD上;点P在线段OC上,点Q在线段OB上;(3)由6<t≤2时OP=1﹣2t、OQ=2﹣t可得△POQ的面积S=12(2﹣t)(1﹣2t)=﹣t2+15t﹣54=﹣(t﹣152)2+【题目详解】(1)∵四边形ABCD是菱形,∴AC⊥BD.在Rt△AOD中,AD=15,AO=1由勾股定理得:OD=AD2-A(2)①当0≤t≤6时,OP=1﹣2t,OQ=2﹣t,则OP+OQ=1﹣2t+2﹣t=﹣3t+21即:y=﹣3t+21;②当6<t≤2时,OP=2t﹣1,OQ=2﹣t,则OP+OQ=2t﹣1+2﹣t=t﹣3即:y=t﹣3;③当2<t≤1时,OP=2t﹣1,OQ=t﹣2,则OP+OQ=2t﹣1+t﹣2=3t﹣21即:y=3t﹣21;综上所述:y=-3t+21(0⩽t⩽6)(3)如图,当6<t≤2时,∵OP=1﹣2t、OQ=2﹣t,∴△POQ的面积S=12(2﹣t)(1﹣2t=﹣t2+15t﹣54=﹣(t﹣152)2+9∴当t=152时,△POQ【题目点拨】本题主要考查四边形的综合问题,解题的关键是熟练掌握菱形的性质、二次函数的应用及分类讨论思想的运用.25、(1)FG=2;(2)见解析.【解题分析】
(1)根据正方形的性质,平行线的性质,角平分线的性质可得出∠DAF=∠F=30°,进一步可求得∠GDF=∠F=30°,从而得出FG=DG,利用勾股定理可求出DG=2,故FG=2.(2)根据已知条件可证得AE=DH且AE⊥DH,从而证得∠MAH=∠AMH,∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度物联网平台与设备采购合同
- 2024年度医疗器械采购合同:高精度医疗设备购买
- 2024年度保温砂浆生产线设备采购及安装合同
- 2024年度校园数字化建设设计与施工合同
- 2024年度专利许可使用合同关键技术参数与权益分配
- 2024年度仓储服务合同的服务条款和责任规定
- 04版公共车位销售与管理合同
- 2024年度企业员工福利IC卡发放与管理合同
- 2024年度版权许可合同:电影版权转授许可协议
- 2024年度大连二手房地产估价服务合同
- 公共卫生与预防医学继续教育平台“大学习”活动线上培训栏目题及答案
- DZ∕T 0382-2021 固体矿产勘查地质填图规范(正式版)
- 人工智能生涯发展展示
- 家庭保险保障计划书
- 马克思主义经典著作选读智慧树知到课后章节答案2023年下四川大学
- 思想道德与法治课件:第四章 第一节 全体人民共同的价值追求则
- JGJ_T231-2021建筑施工承插型盘扣式钢管脚手架安全技术标准(高清-最新版)
- 洁净室施工组织设计方案方案范本
- 《初中英语课堂教学学困生转化个案研究》开题报告
- 钢筋桁架楼承板施工方案
- 国内外动画研究现状述评
评论
0/150
提交评论