版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省安庆市区二十三校八年级数学第二学期期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB2.使式子x-3有意义的x的取值范围是()A.x≥0 B.x>0 C.x>3 D.x≥33.某校规定学生的平时作业,期中考试,期末考试三项成绩分别是按30%、30%、40%计人学期总评成绩,小明的平时作业,期中考试,期末考试的英语成绩分别是93分、90分、96分,则小明这学期的总评成绩是()A.92 B.90 C.93 D.93.34.下列代数式中,属于最简二次根式的是(
)A.7 B.23 C.12 D.0.55.点(a,﹣1)在一次函数y=﹣2x+1的图象上,则a的值为()A.a=﹣3 B.a=﹣1 C.a=1 D.a=26.下列各式中,运算正确的是A. B. C. D.7.以下调查中,适宜全面调查的是()A.调查某批次汽车的抗撞击能力 B.调查某班学生的身高情况C.调查春节联欢晚会的收视率 D.调查济宁市居民日平均用水量8.如图,反比例函数y=(k≠0,x>0)图象经过正方形ABCD的顶点A,边BC在x轴的正半轴上,连接OA,若BC=2OB,AD=4,则k的值为()A.2 B.4 C.6 D.89.已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为菱形的是()A.AB=CD B.AB=BC C.AC平分∠BAD D.AC⊥BD10.某校随机抽查了10名参加2016年云南省初中学业水平考试学生的体育成绩,得到的结果如表:成绩(分)4647484950人数(人)12124下列说法正确的是()A.这10名同学的体育成绩的众数为50B.这10名同学的体育成绩的中位数为48C.这10名同学的体育成绩的方差为50D.这10名同学的体育成绩的平均数为48二、填空题(每小题3分,共24分)11.如图,在直角坐标系中,正方形A1B1C1O、A2B2C2C1、A3B3C3C2、…、AnBnCnCn-1的顶点A1、A2、A3、…、An均在直线y=kx+b上,顶点C1、C2、C3、…、Cn在x轴上,若点B1的坐标为(1,1),点B2的坐标为(3,2),那么点A4的坐标为,点An的坐标为.12.计算:=________.13.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若OF的长为,则△CEF的周长为______.14.已知,是关于的方程的两根,且满足,那么的值为________.15.观察以下等式:第1个等式:第2个等式:=1第3个等式:=1第4个等式:=1…按照以下规律,写出你猜出的第n个等式:______(用含n的等式表示).16.若ab=﹣2,a+b=1,则代数式a2b+ab2的值等于_____.17.已知线段AB=100m,C是线段AB的黄金分割点,则线段AC的长约为。(结果保留一位小数)18.已知:关于的方程有一个根是2,则________,另一个根是________.三、解答题(共66分)19.(10分)如图,折叠长方形一边AD,点D落在BC边的点F处,BC=10cm,AB=8cm.求:(1)FC的长;(2)EF的长.20.(6分)解方程:(1)(2)(3)21.(6分)先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x-y)+(x-y)2=_______________;(2)因式分解:(a+b)(a+b-4)+4;(3)求证:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.22.(8分)如图,在每个小正方形的边长均为的方格纸中,有线段和线段,点、、、均在小正方形的顶点上.在方格纸中画出以为对角线的正方形,点、在小正方形的顶点上;在方格纸中画出以为一边的菱形,点、在小正方形的顶点上,且菱形面积为;请直接写出的面积.23.(8分)学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如表:选手表达能力阅读理解综合素质汉字听写甲85788573乙73808283(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2、1、3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁.24.(8分)已知矩形周长为18,其中一条边长为x,设另一边长为y.(1)写出y与x的函数关系式;(2)求自变量x的取值范围.25.(10分)如图,在菱形ABCD中,AB=4cm,∠BAD=60°.动点E、F分别从点B、D同时出发,以1cm/s的速度向点A、C运动,连接AF、CE,取AF、CE的中点G、H,连接GE、FH.设运动的时间为ts(0<t<4).(1)求证:AF∥CE;(2)当t为何值时,四边形EHFG为菱形;(3)试探究:是否存在某个时刻t,使四边形EHFG为矩形,若存在,求出t的值,若不存在,请说明理由.26.(10分)现代互联网技术的广泛应用,催生了快递行业的高速发展,据调查,某家快递公司,今年三月份与五月份完成投递的快件总件数分别是5万件和万件,现假定该公司每月投递的快件总件数的增长率相同.求该公司投递快件总件数的月平均增长率;如果平均每人每月可投递快递万件,那么该公司现有的16名快递投递员能否完成今年6月份的快递投递任务?
参考答案一、选择题(每小题3分,共30分)1、C【解题分析】
A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形;C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;故选C.2、D【解题分析】
根据二次根式有意义的条件:被开方数是非负数,列不等式求解.【题目详解】解:∵x-3式子有意义,
∴x-3≥0,
解得:x≥3,
故选D..【题目点拨】本题考查了二次根式的意义的条件.关键是把握二次根式中的被开方数必须是非负数,否则二次根式无意义.3、D【解题分析】
小明这学期总评成绩是平时作业、期中练习、期末考试的成绩与其对应百分比的乘积之和.【题目详解】解:小明这学期的总评成绩是93×30%+90×30%+96×40%=93.3(分)故选:D.【题目点拨】本题主要考查加权平均数的计算,掌握加权平均数的定义是解题的关键.4、A【解题分析】
最简二次根式满足下列两个条件:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式,再对各选项逐一判断即可.【题目详解】解:A、7是最简二次根式,故A符合题意;B、23=63,故C、12=23,故12不是最简二次根式,故D、0.5=22,故0.5故答案为:A【题目点拨】本题考查二次根式,解题的关键是熟练运用最简二次根式的定义,本题属于基础题型.5、C【解题分析】
把点A(a,﹣1)代入y=﹣2x+1,解关于a的方程即可.【题目详解】解:∵点A(a,﹣1)在一次函数y=﹣2x+1的图象上,∴﹣1=﹣2a+1,解得a=1,故选C.【题目点拨】此题考查一次函数图象上点的坐标特征;用到的知识点为:点在函数解析式上,点的横坐标就适合这个函数解析式.6、D【解题分析】
根据合并同类项法则、同底数幂除法法则、幂的乘方的运算法则逐项进行判断即可得.【题目详解】A、,故A选项错误;B、、不是同类项,不能合并,故B选项错误;C、,故C选项错误;D、,故D选项正确,故选D.【题目点拨】本题考查了合并同类项、同底数幂除法、幂的乘方等,熟练掌握各运算的运算法则是解题的关键.7、B【解题分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【题目详解】解:A、调查某批次汽车的抗撞击能力,适合抽样调查,故A选项错误;B、调查某班学生的身高情况,适合全面调查,故B选项正确;C、调查春节联欢晚会的收视率,适合抽样调查,故C选项错误;D、调查济宁市居民日平均用水量,适于抽样调查,故D选项错误.故选:B.【题目点拨】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8、D【解题分析】
根据正方形的性质,和BC=2OB,AD=4,可求出OB、AB,进而确定点A的坐标,代入求出k即可.【题目详解】解:∵正方形ABCD,AD=4,∴AB=AD=4=BC,∵BC=2OB,∴OB=2,∴A(2,4),代入y=得:k=8,故选:D.【题目点拨】本题考查了反比例函数与几何问题中k的求解,解题的关键是根据几何图形的性质得出反比例函数图象上点的坐标.9、A【解题分析】
菱形的判定有以下三种:①一组邻边相等的平行四边形是菱形;②四边相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形.据此判断即可.【题目详解】解:A、由平行四边形的性质可得AB=CD,所以由AB=CD不能判定平行四边形ABCD是菱形,故A选项符合题意;
B、一组邻边相等的平行四边形是菱形,故B选项不符合题意.
C、由一条对角线平分一角,可得出一组邻边相等,也能判定为菱形,故C选项不符合题意;
D、对角线互相垂直的平行四边形是菱形,故D选项不符合题意;
故选:A.【题目点拨】本题考查菱形的判定方法,熟记相关判定即可正确解答.10、A【解题分析】
结合表格根据众数、平均数、中位数的概念求解即可.【题目详解】解:10名学生的体育成绩中50分出现的次数最多,众数为50;第5和第6名同学的成绩的平均值为中位数,中位数为49;平均数为48.6,方差为[(46-48.6)2+2×(47-48.6)2+(48-48.6)2+2×(49-48.6)2+4×(50-48.6)2]≠50;∴选项A正确,B、C、D错误故选:A【题目点拨】本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.二、填空题(每小题3分,共24分)11、A4(7,8);An(2n-1-1,2n-1).【解题分析】
∵点B1的坐标为(1,1),点B2的坐标为(3,2)∴由题意知:A1的坐标是(0,1),A2的坐标是:(1,2),∴直线A1A2的解析式是y=x+1.纵坐标比横坐标多1.∵A1的纵坐标是:1=20,A1的横坐标是:0=20-1;A2的纵坐标是:1+1=21,A2的横坐标是:1=21-1;A3的纵坐标是:2+2=4=22,A3的横坐标是:1+2=3=22-1,A4的纵坐标是:4+4=8=23,A4的横坐标是:1+2+4=7=23-1,即点A4的坐标为(7,8).∴An的纵坐标是:2n-1,横坐标是:2n-1-1,即点An的坐标为(2n-1-1,2n-1).故答案为(7,8);(2n-1-1,2n-1).12、﹣1【解题分析】
利用二次根式的性质将二次根式化简得出即可.【题目详解】解:=|1-|=﹣1.
故答案为:﹣1.【题目点拨】本题考查二次根式的化简求值,正确化简二次根式是解题关键.13、18【解题分析】是的中位线,.,.由勾股定理得.是的中线,.∴△CEF的周长为6.5+6.5+5=1814、或【解题分析】
根据根与系数的关系求出+与·的值,然后代入即可求出m的值.【题目详解】∵,是关于的方程的两根,∴+=2m-2,·=m2-2m,代入,得m2-2m+2(2m-2)=-1,∴m2+2m-3=0,解之得m=或.故答案为:或.【题目点拨】本题考查了一元二次方程ax2+bx+c=0(a≠0)根与系数的关系,若x1,x2为方程的两个根,则x1,x2与系数的关系式:,.15、++×=1【解题分析】
观察前四个等式可得出第n个等式的前两项为及,对比前四个等式即可写出第n个等式,此题得解.【题目详解】解:观察前四个等式,可得出:第n个等式的前两项为及,∴第n个等式为故答案为:++×=1【题目点拨】本题考查规律型中的数字的变化类,观察给定等式,找出第n的等式是解题的关键.16、﹣1【解题分析】
直接将要求值的代数式提取公因式ab,进而把已知数据代入求出答案.【题目详解】∵ab=-1,a+b=1,∴a1b+ab1=ab(a+b)=-1×1=-1.故答案为-1.【题目点拨】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.17、61.8m或38.2m【解题分析】由于C为线段AB=100cm的黄金分割点,则AC=100×61.8m或AC=100-38.238.2m.18、2,1.【解题分析】
设方程x2-3x+a=0的另外一个根为x,根据根与系数的关系,即可解答.【题目详解】解:设方程的另外一个根为,则,,解得:,,故答案为:2,1.【题目点拨】本题主要考查了根与系数的关系及一元二次方程的解,属于基础题,关键掌握x1,x2是方程x2+px+q=0的两根时,x1+x2=-p,x1x2=q.三、解答题(共66分)19、(1)4cm;(2)5cm.【解题分析】
(1)由于△ADE翻折得到△AEF,所以可得AF=AD,则在Rt△ABF中,由勾股定理即可得出结论;(2)由于EF=DE,可设EF的长为x.在Rt△EFC中,利用勾股定理即可得出结论.【题目详解】(1)由题意可得:AF=AD=10cm.在Rt△ABF中,∵AB=8cm,∴BF=6cm,∴FC=BC﹣BF=10﹣6=4(cm).(2)由题意可得:EF=DE,可设DE的长为x,则在Rt△EFC中,(8﹣x)2+42=x2,解得:x=5,即EF的长为5cm.【题目点拨】本题考查了矩形的性质以及翻折的问题,能够熟练运用矩形的性质求解一些简答的问题.20、(1),.(2),.(3)原方程无解【解题分析】
(1)方程利用公式法求出解即可;
(2)方程利用因式分解法求出解即可;
(3)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【题目详解】(1)解:,,,,,.(2)解:原方程可变形为,即.或=0.所以,.(3)解:方程两边同时乘,得.解这个方程,得.检验:当时,,是增根,原方程无解.【题目点拨】此题考查了解一元二次方程-因式分解法及公式法,熟练掌握各种解法是解本题的关键.21、(1)(x-y+1)2;(2)见解析;(3)见解析.【解题分析】分析:(1)把(x-y)看作一个整体,直接利用完全平方公式因式分解即可;(2)令A=a+b,带入后因式分解即可将原式因式分解;(3)将原式转化为(n²+3n)[(n+1)(n+2)]+1,进一步整理为(n²+3n+1)²,根据n为正整数,从而说明原式是整数的平方.本题解析:(1).1+2(x-y)+(x+y)²=(x﹣y+1)2;(2)令A=a+b,则原式变为A(A﹣4)+4=A2﹣4A+4=(A﹣2)2,故(a+b)(a+b﹣4)+4=(a+b﹣2)2;(3)(n+1)(n+2)(n2+3n)+1=(n2+3n)[(n+1)(n+2)]+1=(n2+3n)(n2+3n+2)+1=(n2+3n)2+2(n2+3n)+1=(n2+3n+1)2,∵n为正整数,∴n2+3n+1也为正整数,∴代数式(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.点睛;本题考查了因式分解的应用,解题的关键是认真审题你,理解题意,掌握整体思想解决问题.22、(1)见解析;(2)见解析【解题分析】
(1)根据正方形的性质画出以为对角线的正方形即可;(2)根据菱形的性质及勾股定理画出菱形即可,由图可得的面积.【题目详解】(1)如图,正方形即为所求;(2)如图,菱形即为所求..【题目点拨】本题考查的是作图-应用与设计作图,熟知菱形与正方形的性质及勾股定理是解答此题的关键.23、(1)甲;(2)乙.【解题分析】
(1)先用算术平均数公式,计算乙的平均数,然后根据计算结果与甲的平均成绩比较,结果大的胜出;(2)先用加权平均数公式,计算甲、乙的平均数,然后根据计算结果,结果大的胜出.【题目详解】(1)=(73+80+82+83)÷4=79.5,∵80.25>79.5,∴应选派甲;(2)=(85×2+78×1+85×3+73×4)÷(2+1+3+4)=79.5,=(73×2+80×1+82×3+83×4)÷(2+1+3+4)=80.4,∵79.5<80.4,∴应选派乙.24、(1)y=1﹣x;(2)0<x<1.【解题分析】
(1)直接利用矩形周长求法得出y与x之间的函数关系式;(2)利用矩形的性质分析得出答案.【题目详解】(1)∵矩形周长为18,其中一条边长为x,设另一边长为y,∴2(x+y)=18,则y=1﹣x;(2)由题意可得:1﹣x>0,解得:0<x<1.【题目点拨】此题主要考查了函数关系式以及自变量的取值范围,正确得出函数关系式是解题关键.25、(1)证明见解析;(2)t=1,(3)不存在某个时刻t,使四边形EHFG为矩形.【解题分析】
(1)根据菱形的性质得到∠B=∠D,AD=BC,AB∥DC,推出△ADF≌△CBE,根据全等三角形的性质得到∠DFA=∠BEC,根据平行线的判定定理即可得到结论;
(2)过D作DM⊥AB于M,连接GH,EF,推出四边形AECF是平行四边形,根据菱形的判定定理即可得到四边形EGFH是菱形,证得四边形DMEF是矩形,于是得到ME=DF=t列方程即可得到结论;
(3)不存在,假设存在某个时刻t,使四边形EHFG为矩形,根据矩形的性质列方程即可得到结果.【题目详解】(1)证明:∵动
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 制作课件教程
- 三年级下册数学第一单元课件
- 关于事业单位聘用合同范本
- 2024年度钢筋工劳动争议解决协议3篇
- 非全日制的用工协议书
- 基于2024年度业务扩展的电商与快递合作协议2篇
- 小班数学课件教案《图形宝宝排排队》
- 2024年度居间工程进度报告合同3篇
- 部门供职报告范文
- 公司股东合伙协议书
- 《民法典》全文学习PPT
- GB_T 22627-2022水处理剂 聚氯化铝_(高清-最新版)
- 小学一到六年级的所有日积月累和读读背背还有古诗及文言文加上四字词大全
- 大坝防渗墙注水试验报告
- 废旧物资回收总体服务方案
- 不锈钢水箱检验报告模板内部信息可改
- 海康设备错误代码【精选文档】
- 扫描电镜原理和应用.
- 光电效应测定普朗克常数.ppt
- 奶茶店项目投资可行性分析报告
- 正山小种的特点
评论
0/150
提交评论