2024届福建省龙岩五中学数学八下期末教学质量检测模拟试题含解析_第1页
2024届福建省龙岩五中学数学八下期末教学质量检测模拟试题含解析_第2页
2024届福建省龙岩五中学数学八下期末教学质量检测模拟试题含解析_第3页
2024届福建省龙岩五中学数学八下期末教学质量检测模拟试题含解析_第4页
2024届福建省龙岩五中学数学八下期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届福建省龙岩五中学数学八下期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标()A.(﹣3,4) B.(﹣2,3) C.(﹣5,4) D.(5,4)2.如图两张长相等,宽分别是1和3的矩形纸片上叠合在一起,重叠部分为四边形ABCD,且AB+BC=6,则四面行ABCD的面积为()A.3 B. C.9 D.3.甲、乙、丙、丁四位选手各射击10次,每人的平均成绩都是9.3环,方差如下表所示:选手甲乙丙丁方差0.0350.0360.0280.015则这四人中成绩最稳定的是()A.甲 B.乙 C.丙 D.丁4.在-2,-1,0,1这四个数中,最小的数是()A.-2 B.-1 C.0 D.15.若点,都在反比例函数的图象上,则与的大小关系是A. B. C. D.无法确定6.如图,点A是反比例函数图像上一点,AC⊥x轴于点C,与反比例函数图像交于点B,AB=2BC,连接OA、OB,若△OAB的面积为2,则m+n的值()A.-3 B.-4 C.-6 D.-87.已知一次函数的图象过点(0,3)和(﹣2,0),那么直线必过下面的点()A.(4,6) B.(﹣4,﹣3) C.(6,9) D.(﹣6,6)8.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A. B. C.5 D.49.如图,矩形ABCD中,AB=8,BC=4,P,Q分别是直线AB,AD上的两个动点,点在边上,,将沿翻折得到,连接,,则的最小值为()A. B. C. D.10.点()在函数y=2x-1的图象上.A.(1,3) B.(−2.5,4) C.(−1,0) D.(3,5)二、填空题(每小题3分,共24分)11.一组数据10,9,10,12,9的中位数是__________.12.将点,向右平移个单位后与点关于轴对称,则点的坐标为______.13.如图,将正方形OABC放在平面直角坐标系中,O是坐标原点,点A的坐标是(2,3),则C点坐标是_____.14.如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是_____.15.如图,正方形OABC的边OA,OC在坐标轴上,矩形CDEF的边CD在CB上,且5CD=3CB,边CF在轴上,且CF=2OC-3,反比例函数y=(k>0)的图象经过点B,E,则点E的坐标是____16.如图,在矩形中,对角线与相交于点,,,则的长为________.17.分解因式2x3y﹣8x2y+8xy=_____.18.分式方程有增根,则的值为__________。三、解答题(共66分)19.(10分)(2013年四川广安8分)某商场筹集资金12.8万元,一次性购进空调、彩电共30台.根据市场需要,这些空调、彩电可以全部销售,全部销售后利润不少于1.5万元,其中空调、彩电的进价和售价见表格.空调彩电进价(元/台)54003500售价(元/台)61003900设商场计划购进空调x台,空调和彩电全部销售后商场获得的利润为y元.(1)试写出y与x的函数关系式;(2)商场有哪几种进货方案可供选择?(3)选择哪种进货方案,商场获利最大?最大利润是多少元?20.(6分)如图,在平行四边形ABCD中,O是AB的中点,连接DO并延长交CB的延长线于点E,连接AE、DB.(1)求证:△AOD≌△BOE;(2)若DC=DE,判断四边形AEBD的形状,并说明理由.21.(6分)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后,折叠DE分别交AB、AC于E、G,连接GF,下列结论:①∠FGD=112.5°②BE=2OG③S△AGD=S△OGD④四边形AEFG是菱形()A.1个 B.2个 C.3个 D.4个22.(8分)(1)先化简,再求值:,其中(2)解方程:23.(8分)计算(1)×(2)()0+-(-)-224.(8分)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下:根据规定,笔试成绩和面试成绩分别按一定的百分比折和成综合成绩(综合成绩的满分仍为100分)(1)这6名选手笔试成绩的中位数是分,众数是分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.25.(10分)某班开展勤俭节约的活动,对每个同学的一天的消费情况进行调查,得到统计图如图所示:(1)求该班的总人数;(2)将条形图补充完整,并写出消费金额的中位数;(3)该班这一天平均每人消费多少元?26.(10分)市教育局为了解本市中学生参加志愿者活动情况,随机拍查了某区部分八年级学生一学年来参加志愿者活动的次数,并用得到的数据绘制了如下两幅不完整的统计图.(1)求参加这次调查统计的学生总人数及这个区八年级学生平均每人一学年来参加志愿者活动的次数;(2)在这次抽样调查中,众数和中位数分别是多少?(3)如果该区共有八年级学生人,请你估计“活动次数不少于次”的学生人数大约多少人.

参考答案一、选择题(每小题3分,共30分)1、C【解题分析】

利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.【题目详解】解:∵菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,∴AB=5,∴DO=4,∴点C的坐标是:(﹣5,4).故选C.【题目点拨】此题主要考查了菱形的性质以及坐标与图形的性质,得出DO的长是解题关键.2、D【解题分析】

过D分别作DE⊥BC,DF⊥BA,分别交BC、BA延长线于E、F,由矩形性质可得四边形ABCD是平行四边形,根据AB+BC=6,利用平行四边形面积公式可求出AB的长,即可求出平行四边形ABCD的面积.【题目详解】过D分别作DE⊥BC,DF⊥BA,分别交BC、BA延长线于E、F,∵两张长相等,宽分别是1和3的矩形纸片上叠合在一起,重叠部分为四边形ABCD,∴AD//BC,AB//CD,DF=3,DE=1,∴四边形ABCD是平行四边形,∴SABCD=AB×DF=BC×DE,即3AB=BC,∵AB+BC=6,∴AB+3AB=6,解得:AB=,∴SABCD=AB×DF=×3=.故选D.【题目点拨】本题考查了矩形的性质及平行四边形的判定及面积公式,正确作出辅助线并根据平行四边形面积公式求出AB的长是解题关键.3、D【解题分析】∵0.036>0.035>0.028>0.015,∴丁最稳定,故选D.4、A【解题分析】

根据正数大于0,负数小于0,负数绝对值越大值越小即可求解.【题目详解】解:在、、、这四个数中,大小顺序为:,所以最小的数是.故选A.【题目点拨】此题考查了有理数的大小的比较,解题的关键利用正负数的性质及数轴可以解决问题.5、A【解题分析】

把所给点的横纵坐标代入反比例函数的解析式,求出、的值,比较大小即可.【题目详解】点在反比例函数的图象上,,点在反比例函数的图象上,,.故选:.【题目点拨】本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积等于比例系数.6、D【解题分析】

由AB=2BC可得由于△OAB的面积为2可得,由于点A是反比例函数可得由于m<0可求m,n的值,即可求m+n的值。【题目详解】解:∵AB=2BC∴∵△OAB的面积为2∴,∵点A是反比例函数∴又∵m<0∴m=-6同理可得:n=-2∴m+n=-8故答案为:D【题目点拨】本题考查了反比例函数与几何图形,熟练掌握反比例函数与三角形面积的关系是解题的关键.7、B【解题分析】试题分析:根据“两点法”确定一次函数解析式,再检验直线解析式是否满足各点的横纵坐标.解:设经过两点(0,3)和(﹣2,0)的直线解析式为y=kx+b,则,解得,∴y=x+3;A、当x=4时,y=×4+3=9≠6,点不在直线上;B、当x=﹣4时,y=×(﹣4)+3=﹣3,点在直线上;C、当x=6时,y=×6+3=12≠9,点不在直线上;D、当x=﹣6时,y=×(﹣6)+3=﹣6≠6,点不在直线上;故选B.8、A【解题分析】

根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.【题目详解】解:∵四边形ABCD是菱形,设AB,CD交于O点,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB==5,∵S菱形ABCD=×AC×BD=AB×DH,∴×8×6=5×DH,∴DH=,故选A.【题目点拨】本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S菱形ABCD=×AC×BD=AB×DH是解此题的关键.9、B【解题分析】

作点C关于AB的对称点H,连接PH,EH,由已知求出CE=6,CH=8,由勾股定理得出EH==10,由SAS证得△PBC≌△PBH,得出CP=PH,PF+PC=PF+PH,当E、F、P、H四点共线时,PF+PH值最小,即可得出结果.【题目详解】解:作点C关于AB的对称点H,连接PH,EH,如图所示:∵矩形ABCD中,AB=8,BC=4,DE=2,∴CE=CD−DE=AB−DE=6,CH=2BC=8,∴EH==10,在△PBC和△PBH中,,∴△PBC≌△PBH(SAS),∴CP=PH,∴PF+PC=PF+PH,∵EF=DE=2是定值,∴当E、F、P、H四点共线时,PF+PH值最小,最小值=10−2=8,∴PF+PD的最小值为8,故选:B.【题目点拨】本题考查翻折变换、矩形的性质、全等三角形的判定与性质、勾股定理等知识,解题的关键是学会利用轴对称,根据两点之间线段最短解决最短问题.10、D【解题分析】

将各点坐标代入函数y=2x−1,依据函数解析式是否成立即可得到结论.【题目详解】解:A.当时,,故不在函数的图象上.B.当时,,故不在函数的图象上.C.当时,,故不在函数的图象上.D.当时,,故在函数的图象上.故选:D.【题目点拨】本题主要考查了一次函数图象上点的坐标特征,直线上任意一点的坐标都满足函数关系式y=kx+b.二、填空题(每小题3分,共24分)11、1【解题分析】

根据中位数的意义,将数据排序后找中间位置的数会中间两个数的平均数即可.【题目详解】将数据按从小到大排列为:9,9,1,112,处于中间位置也就是第3位的是1,因此中位数是1,

故答案为:1.【题目点拨】此题考查中位数的意义,理解中位数的意义,掌握中位数的方法是解题关键.12、(4,-3)【解题分析】

让点A的纵坐标不变,横坐标加4即可得到平移后的坐标;关于x轴对称的点即让横坐标不变,纵坐标互为相反数即可得到点的坐标.【题目详解】将点A向右平移4个单位后,横坐标为0+4=4,纵坐标为3∴平移后的坐标是(4,3)∵平移后关于x轴对称的点的横坐标为4,纵坐标为-3∴它关于x轴对称的点的坐标是(4,-3)【题目点拨】此题考查点的平移,关于x轴对称点的坐标特征,解题关键在于掌握知识点13、(﹣3,2).【解题分析】

过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.【题目详解】过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,如图所示:∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=3,CE=OD=2,∵点C在第二象限,∴点C的坐标为(﹣3,2).故答案为(﹣3,2).【题目点拨】本题考查了全等三角形的判定与性质,正方形的性质,坐标与图形性质,作辅助线构造出全等三角形是解题的关键.14、18【解题分析】分析:利用菱形的性质结合勾股定理得出AB的长,进而得出答案.详解:∵在菱形ABCD中,AC=8,BD=6,∴AB=BC,∠AOB=90°,AO=4,BO=3,∴BC=AB=,∴△ABC的周长=AB+BC+AC=5+5+8=18.故答案为18点睛:本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键.15、【解题分析】

设正方形OABC的边0A=a,可知OA=OC=AB=CB=a,所以点B的坐标为(aa),推出反比例函数解析式的k=a,再由CF=2OC-3,可知CF=2a-3,推出点的坐标为(,3a-3),根据5CD=3CB,可求出点E的坐标【题目详解】由题意可设:正方形OABC的边OA=a∴OA=OC=AB=CB∴点B的坐标为(a,a),即k=aCF=2OC-3∴CF=2a-3∵OF=OC+CF=a+2a-3=3a-3∴点E的纵坐标为3a-3将3a-3代入反比例函数解析式y=中,可得点E的横坐标为∵四边形CDEF为矩形,∴CD=EF=5CD=3CB=3a,可求得:a=将a=,代入点E的坐标为(,3a-3),可得:E的坐标为故答案为:【题目点拨】本题考查了反比例函数图像上点的坐标特征,正方形矩形的性质,熟知在反比例函数的题目中利用设点法找等量关系解方程是解题关键16、【解题分析】

根据矩形的性质得出OA=OB=OC=OD,∠BAD=90°,求出△AOB是等边三角形,求出OB=AB=1,根据矩形的性质求出BD,根据勾股定理求出AD即可.【题目详解】∵四边形ABCD是矩形,∴OA=OB=OC=OD,∠BAD=90°,∵∴△AOB是等边三角形,∴OB=AB=1,∴BD=2BO=2,在Rt△BAD中,故答案为【题目点拨】考查矩形的性质,勾股定理等,掌握矩形的对角线相等是解题的关键.17、2xy(x﹣2)2【解题分析】

原式提取公因式,再利用完全平方公式分解即可.【题目详解】解:原式=2xy(x2﹣4x+4)=2xy(x﹣2)2,故答案为:2xy(x﹣2)2【题目点拨】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18、3【解题分析】

方程两边都乘以最简公分母(x-1)(x+1)把分式方程化为整式方程,再根据分式方程的增根是使最简公分母等于0的未知数的值,求出增根,然后代入进行计算即可得解.【题目详解】解:∵分式方程有增根,

∴x-1=0,x+1=0,

∴x1=1,x1=-1.

两边同时乘以(x-1)(x+1),原方程可化为x(x+1)-(x-1)(x+1)=m,

整理得,m=x+1,

当x=1时,m=1+1=3,

当x=-1时,m=-1+1=0,

当m=0时,方程为=0,

此时1=0,

即方程无解,

∴m=3时,分式方程有增根,

故答案为:m=3.【题目点拨】本题考查对分式方程的增根,解一元一次方程等知识点的理解和掌握,理解分式方程的增根的意义是解题关键.三、解答题(共66分)19、解:(1)设商场计划购进空调x台,则计划购进彩电(30﹣x)台,由题意,得y=(6100﹣5400)x+(3900﹣3500)(30﹣x)=300x+12000。(2)依题意,得,解得10≤x≤。∵x为整数,∴x=10,11,12。∴商场有三种方案可供选择:方案1:购空调10台,购彩电20台;方案2:购空调11台,购彩电19台;方案3:购空调12台,购彩电18台。(3)∵y=300x+12000,k=300>0,∴y随x的增大而增大。∴当x=12时,y有最大值,y最大=300×12+12000=15600元.故选择方案3:购空调12台,购彩电18台时,商场获利最大,最大利润是15600元。【解题分析】(1)y=(空调售价﹣空调进价)x+(彩电售价﹣彩电进价)×(30﹣x)。(2)根据用于一次性购进空调、彩电共30台,总资金为12.8万元,全部销售后利润不少于1.5万元.得到一元一次不等式组,求出满足题意的x的正整数值即可。(3)利用y与x的函数关系式y=150x+6000的增减性来选择哪种方案获利最大,并求此时的最大利润即可。考点:一次函数和一元一次不等式组的应用,由实际问题列函数关系式,一次函数的性质。20、(1)证明见解析;(2)四边形AEBD是矩形.【解题分析】

(1)利用平行线得到∠ADO=∠BEO,再利用对顶角相等和线段中点,可证明△AOD≌△BOE;(2)先证明四边形AEBD是平行四边形,再利用对角线相等的平行四边形的矩形,可判定四边形AEBD是矩形.【题目详解】(1)∵四边形ABCD是平行四边形,∴AD∥CE,∴∠ADO=∠BEO.∵O是BC中点,∴AO=BO.又∵∠AOD=∠BOE,∴△AOD≌△BOE(AAS);(2)四边形AEBD是矩形,理由如下:∵△AOD≌△BOE,∴DO=EO.又AO=BO,∴四边形AEBD是平行四边形.∵DC=DE=AB,∴四边形AEBD是矩形.【题目点拨】本题考查了平行四边形的性质、全等三角形的判定和性质、矩形的判定和性质,解决这类问题往往是把四边形问题转化为三角形问题解决.21、C【解题分析】

①由四边形ABCD是正方形和折叠性得出∠DAG=∠DFG=45°,∠ADG=∠FDG=45°÷2=22.5°,再由三角形的内角和求出∠FGD=112.5°.故①正确,②④由四边形ABCD是正方形和折叠,判断出四边形AEFG是平行四边形,再由AE=EF,得出四边形AEFG是菱形.利用45°的直角三角形得出GF=OG,BE=EF=GF,得出BE=2OG,故②④正确.③由四边形ABCD是正方形和折叠性,得到△ADG≌△FDG,所以S△AGD=S△FDG≠S△OGD故③错误.【题目详解】①由四边形ABCD是正方形和折叠性知,∠DAG=∠DFG=45°,∠ADG=∠FDG=45°÷2=22.5°,∴∠FGD=180°﹣∠DFG﹣∠FDG=180°﹣45°﹣22.5°=112.5°,故①正确,②由四边形ABCD是正方形和折叠性得出,∠DAG=∠DFG=45°,∠EAD=∠EFD=90°,AE=EF,∵∠ABF=45°,∴∠ABF=∠DFG,∴AB∥GF,又∵∠BAC=∠BEF=45°,∴EF∥AC,∴四边形AEFG是平行四边形,∴四边形AEFG是菱形.∵在Rt△GFO中,GF=OG,在Rt△BFE中,BE=EF=GF,∴BE=2OG,故②④正确.③由四边形ABCD是正方形和折叠性知,AD=FD,AG=FG,DG=DG,在△ADG和△FDG中,,∴△ADG≌△FDG(SSS),∴S△AGD=S△FDG≠S△OGD故③错误.正确的有①②④,故选C.【题目点拨】本题主要考查了折叠问题,菱形的判定及正方形的性质,解题的关键是明确图形折叠前后边及角的大小没有变化.22、(1),;(2).【解题分析】

(1)先进行除法运算,再通分进行化简,将代入化简结果即可得到答案;(2)方程两边都乘以,再移项,系数化为1,检验根的正确性,得到答案.【题目详解】(1)当时,原式(2)解方程:解:方程两边都乘以,得解这个方程,得检验:将代入原方程左边=右边=1∴原方程的根是【题目点拨】本题考查分式的化简和解分式方程,解题的关键是掌握分式的化简和解分式方程的方法.23、(1);(2)2-1【解题分析】

(1)首先计算二次根式的乘法,再计算二次根式的除法即可;(2)首先计算零次幂、二次根式的化简、负整数指数幂,然后再计算加减即可.【题目详解】解:(1)原式===×=×=;(2)原式=1+2-4=2-1.【题目点拨】此题主要考查了二次根式的混合运算和零次幂、负整数指数幂,关键是熟练掌握各计算公式和计算法则.24、(1)84.5,84;(2)笔试成绩和面试成绩各占的百分比是40%,60%;(3)2号选手的综合成绩是89.6(分),3号选手的综合成绩是85.2(分),4号选手的综合成绩是90(分),5号选手的综合成绩是81.6(分),6号选手的综合成绩是83(分),综合成绩排序前两名人选是4号和2号.【解题分析】

(1)根据中位数和众数的定义即把这组数据从小到大排列,再找出最中间两个数的平均数就是中位数,再找出出现的次数最多的数即是众数;(2)先设笔试成绩和面试成绩各占的百分百是x,y,根据题意列出方程组,求出x,y的值即可;(3)根据笔试成绩和面试成绩各占的百分比,分别求出其余五名选手的综合成绩,即可得出答案.【题目详解】(1)把这组数据从小到大排列为,80,84,84,85,90,92,最中间两个数的平均数是(84+85)÷2=84.5(分),则这6名选手笔试成绩的中位数是84.5,84出现了2次

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论