




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省深圳市龙岗区龙城初级中学2024届八年级数学第二学期期末达标测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.若关于x的不等式组的解集为x<2,则a的取值范围是()A.a≥﹣2 B.a>﹣2 C.a≤﹣2 D.a<﹣22.已知点在第二象限,则点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.如图,在正方形ABCD中,E是对角线BD上一点,且满足=AD,连接CE并延长交AD于点F,连接AE,过B点作于点G,延长BG交AD于点H.在下列结论中:①AH=DF;②∠AEF=45°;③.其中不正确的结论有()A.1个 B.2个 C.3个 D.0个4.若直线与直线的交点在第三象限,则的取值范围是()A. B. C.或 D.5.若式子有意义,则的取值范围为()A. B. C. D.6.如果一组数据1、2、x、5、6的众数是6,则这组数据的中位数是()A.1 B.2 C.5 D.67.若x、y都是实数,且,则xy的值为A.0 B. C.2 D.不能确定8.已知一组数据,,,,的平均数为5,则另一组数据,,,,的平均数为()A.4 B.5 C.6 D.109.下面是某八年级(2)班第1组女生的体重(单位:kg):35,36,42,42,68,40,38,这7个数据的中位数是()A.68 B.43 C.42 D.4010.如图,已知BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=6,则DF的长度是()A.2 B.3 C.4 D.611.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.612.一次函数y=kx+1,y随x的增大而减小,则一次函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(每题4分,共24分)13.已知与成正比例关系,且当时,,则时,_______.14.甲、乙两人进行射击测试,每人20次射击的平均成绩恰好相等,且他们的标准差分别是S甲=1.8,S乙=0.1.在本次射击测试中,甲、乙两人中成绩较为稳定的是_____.(填:甲或乙)15.若分式的值为0,则的值为____.16.在函数中,自变量的取值范围是________.17.在一次芭蕾舞比赛中有甲、乙两个团的女演员参加表演,她们的平均身高相同,若S甲2=1.5,S乙2=2.5,则_____(填“甲”或“乙”)表演团的身高更整齐.18.我市某一周每天的最低气温统计如下(单位:℃):﹣1,﹣4,6,0,﹣1,1,﹣1,则这组数据的众数为__________.三、解答题(共78分)19.(8分)如图,把矩形放入平面直角坐标系中,使分别落在轴的正半轴上,其中,对角线所在直线解析式为,将矩形沿着折叠,使点落在边上的处.(1)求点的坐标;(2)求的长度;(3)点是轴上一动点,是否存在点使得的周长最小,若存在,请求出点的坐标,如不存在,请说明理由.20.(8分)已知正比例函数与反比例函数.(1)证明:直线与双曲线没有交点;(2)若将直线向上平移4个单位后与双曲线恰好有且只有一个交点,求反比例函数的表达式和平移后的直线表达式;(3)将(2)小题平移后的直线代表的函数记为,根据图象直接写出:对于负实数,当取何值时21.(8分)如图,点E、F分别在矩形ABCD的边BC、AD上,把这个矩形沿EF折叠后,点D恰好落在BC边上的G点处,且∠AFG=60°.(1)求证:GE=2EC;(2)连接CH、DG,试证明:CH//DG.22.(10分)如图,已知一次函数y=x+b的图象与反比例函数y=(x<0)的图象交于点A(−1,2)和点B(1)求k的值及一次函数解析式;(2)点A与点A′关于y轴对称,则点A′的坐标是___;(3)在y轴上确定一点C,使△ABC的周长最小,求点C的坐标。23.(10分)(几何背景)如图1,AD为锐角△ABC的高,垂足为D.求证:AB2﹣AC2=BD2﹣CD2(知识迁移)如图2,矩形ABCD内任意一点P,连接PA、PB、PC、PD,请写出PA、PB、PC、PD之间的数量关系,并说明理由.(拓展应用)如图3,矩形ABCD内一点P,PC⊥PD,若PA=a,PB=b,AB=c,且a、b、c满足a2﹣b2=c2,则的值为(请直接写出结果)24.(10分)如图,A,B是直线y=x+4与坐标轴的交点,直线y=-2x+b过点B,与x轴交于点C.(1)求A,B,C三点的坐标;(2)点D是折线A—B—C上一动点.①当点D是AB的中点时,在x轴上找一点E,使ED+EB的和最小,用直尺和圆规画出点E的位置(保留作图痕迹,不要求写作法和证明),并求E点的坐标.②是否存在点D,使△ACD为直角三角形,若存在,直接写出D点的坐标;若不存在,请说明理由25.(12分)(1)计算:(2)已知,求代数式的值。26.某商场销售产品A,第一批产品A上市40天内全部售完.该商场对第一批产品A上市后的销售情况进行了跟踪调查,调查结果如图所示:图①中的折线表示日销售量w与上市时间t的关系;图②中的折线表示每件产品A的销售利润y与上市时间t的关系.(1)观察图①,试写出第一批产品A的日销售量w与上市时间t的关系;(2)第一批产品A上市后,哪一天这家商店日销售利润Q最大?日销售利润Q最大是多少元?(日销售利润=每件产品A的销售利润×日销售量)
参考答案一、选择题(每题4分,共48分)1、C【解题分析】
分别求出每个不等式的解集,根据不等式组的解集为x<2可得关于a的不等式,解之可得.【题目详解】解不等式,得:x<2,解不等式<x,得:x<﹣a,∵不等式组的解集为x<2,∴﹣a≥2,解得:a≤﹣2,故选:C.【题目点拨】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2、D【解题分析】
依据A(a,﹣b)在第二象限,可得a<0,b<0,进而得到1﹣a>0,2b<0,即可得出点B(1﹣a,2b)在第四象限.【题目详解】∵A(a,﹣b)在第二象限,∴a<0,b<0,∴1﹣a>0,2b<0,∴点B(1﹣a,2b)在第四象限.故选D.【题目点拨】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3、A【解题分析】
先判断出∠DAE=∠ABH,再判断△ADE≌△CDE得出∠DAE=∠DCE=22.5°,∠ABH=∠DCF,再判断出Rt△ABH≌Rt△DCF从而得到①正确,根据三角形的外角求出∠AEF=45°,得出②正确;连接HE,判断出S△EFH≠S△EFD得出③错误.【题目详解】∵BD是正方形ABCD的对角线,∴∠ABE=∠ADE=∠CDE=45°,AB=BC,∵BE=BC,∴AB=BE,∵BG⊥AE,∴BH是线段AE的垂直平分线,∠ABH=∠DBH=22.5°,在Rt△ABH中,∠AHB=90°-∠ABH=67.5°,∵∠AGH=90°,∴∠DAE=∠ABH=22.5°,在△ADE和△CDE中,∴△ADE≌△CDE,∴∠DAE=∠DCE=22.5°,∴∠ABH=∠DCF,在Rt△ABH和Rt△DCF中,∴Rt△ABH≌Rt△DCF,∴AH=DF,∠CFD=∠AHB=67.5°,∵∠CFD=∠EAF+∠AEF,∴67.5°=22.5°+∠AEF,∴∠AEF=45°,故①②正确;如图,连接HE,∵BH是AE垂直平分线,∴AG=EG,∴S△AGH=S△HEG,∵AH=HE,∴∠AHG=∠EHG=67.5°,∴∠DHE=45°,∵∠ADE=45°,∴∠DEH=90°,∠DHE=∠HDE=45°,∴EH=ED,∴△DEH是等腰直角三角形,∵EF不垂直DH,∴FH≠FD,∴S△EFH≠S△EFD,∴S四边形EFHG=S△HEG+S△EFH=S△AHG+S△EFH≠S△DEF+S△AGH,故③错误,∴正确的是①②,故选A.【题目点拨】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,三角形的内角和和三角形外角的性质,解本题的关键是判断出△ADE≌△CDE,难点是作出辅助线.4、A【解题分析】
先把y=﹣2x﹣1和y=2x+b组成方程组求解,x和y的值都用b来表示,再根据交点坐标在第三象限表明x、y都小于0,即可求得b的取值范围.【题目详解】解:解方程组,解得∵交点在第三象限,∴解得:b>﹣1,b<1,∴﹣1<b<1.故选A.【题目点拨】本题主要考查两直线相交的问题,关键在于解方程组用含b的式子表示x、y.两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.5、A【解题分析】
根据二次根式有意义的条件可得x−2≥0,再解不等式可得答案.【题目详解】解:由题意得:x−2≥0,解得:x≥2,故选:A.【题目点拨】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.6、C【解题分析】分析:根据众数的定义先求出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即可得出答案.详解:∵数据1,2,x,5,6的众数为6,∴x=6,把这些数从小到大排列为:1,2,5,6,6,最中间的数是5,则这组数据的中位数为5;故选C.点睛:本题考查了中位数的知识点,将一组数据按照从小到大的顺序排列,如果数据的个数为奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数为偶数,则中间两个数据的平均数就是这组数据的中位数.7、C【解题分析】由题意得,2x−1⩾0且1−2x⩾0,解得x⩾且x⩽,∴x=,y=4,∴xy=×4=2.故答案为C.8、C【解题分析】
根据平均数的性质,所有数之和除以总个数即可得出平均数.【题目详解】依题意得:++++所以平均数为6.故选C.【题目点拨】考查算术平均数,掌握平均数的计算方法是解题的关键.:9、D【解题分析】
把这组数据按从小到大的顺序排列,然后按照中位数的定义求解.【题目详解】解:这组数据按从小到大的顺序排列为:35,36,38,1,42,42,68,
则中位数为:1.
故选D.【题目点拨】本题考查了中位数的定义,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.10、D【解题分析】
根据角平分线的性质进行求解即可得.【题目详解】∵BG是∠ABC的平分线,DE⊥AB,DF⊥BC,∴DF=DE=6,故选D.【题目点拨】本题考查了角平分线的性质,熟练掌握角平分线上的点到角的两边的距离相等是解题的关键.11、A【解题分析】
作DE⊥AB于E,∵AB=10,S△ABD=15,∴DE=3,∵AD平分∠BAC,∠C=90°,DE⊥AB,∴DE=CD=3,故选A.12、C【解题分析】
根据函数的增减性及解析式判断函数图象所经过的象限即可.【题目详解】∵一次函数y=kx+1,y随x的增大而减小,∴k<0,∵1>0,∴函数图象经过一、二、四象限.故选C.【题目点拨】首先能够根据待定系数法正确求出直线的解析式.在直线y=kx+b中,当k>0,b>0时,函数图象过一、二、三象限,y随x增大而增大;当k>0,b<0时,函数图象过一、三、四象限,y随x增大而增大;当k<0,b>0时,函数图象过一、二、四象限,y随x增大而减小;当k<0,b<0时,函数图象过二、三、四象限,y随x增大而减小.二、填空题(每题4分,共24分)13、2【解题分析】
根据题意,可设;把,代入即可求得k的值,从而求得函数解析式;代入,即可求得x的值.【题目详解】设,把,代入,得:解得:则函数的解析式为:即把代入,解得:故答案为:2【题目点拨】本题考查了正比例函数以及待定系数法求函数解析式,稍有难度,熟练掌握正比例函数的概念和待定系数法是解答本题的关键.14、乙【解题分析】
根据标准差的意义求解可得.标准差越小,稳定性越好.【题目详解】解:∵S甲=1.8,S乙=0.1,∴S甲>S乙,∴成绩较稳定的是乙.故答案为:乙.【题目点拨】本题考查标准差的意义标准差是反应一组数据离散程度最常用的一种量化形式,是表示精密确的最要指标标准差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.15、2【解题分析】
先进行因式分解和约分,然后求值确定a【题目详解】原式=∵值为0∴a-2=0,解得:a=2故答案为:2【题目点拨】本题考查解分式方程,需要注意,此题a不能为-2,-2为分式方程的增根,不成立16、x≠1【解题分析】
根据分式有意义的条件,即可求解.【题目详解】∵在函数中,x-1≠0,∴x≠1.故答案是:x≠1.【题目点拨】本题主要考查函数的自变量的取值范围,掌握分式的分母不等于零,是解题的关键.17、甲【解题分析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【题目详解】解:由于S2甲<S乙2,则成绩较稳定的演员是甲.故答案为甲.【题目点拨】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.18、-1【解题分析】
众数是一组数据中出现次数最多的数据.【题目详解】观察﹣1,﹣4,6,0,﹣1,1,﹣1其中﹣1出现的次数最多,故答案为:.【题目点拨】本题考查了众数的概念,解题的关键在于对众数的理解.三、解答题(共78分)19、(1);(2);(3),见解析.【解题分析】
(1)根据点C的坐标确定b的值,利用待定系数法求出点A坐标即可解决问题;(2)在Rt△BCD中,BC=6,BD=AB=10,CD==8,OD=10-8=2,设DE=AE=x,在Rt△DEO中,根据DE2=OD2+OE2,构建方程即可解决问题;(3)如图作点E关于y轴的对称点E′,连接BE′交y轴于P,此时△BPE的周长最小.利用待定系数法求出直线BE′的解析式即可解决问题;【题目详解】解:,四边形是矩形,,代入得到直线的解析式为令,得到.在中,,设在中,如图作点关于轴的对称点,连接交轴于,此时的周长最小.设直线的解析式为,则有,解得:直线的解析式为【题目点拨】本题考查一次函数综合题、矩形的性质、翻折变换、勾股定理等知识,解题的关键是熟练掌握待定系数法解决问题,学会利用轴对称解决最短问题,属于中考压轴题.20、(1)方程组无解即没有公共解,也就是两函数图象没有交点(交点即公共点);(2)当时,当时,;(3)当或时满足.【解题分析】
(1)将和这两函数看成两个不定方程,联立方程组,整理后得方程,再利用根的判别式得出这个方程无解,所以两函数图象没有交点;(2)向上平移4个单位后,联立方程组,整理后得方程,因为直线与双曲线有且只有一个交点,所以方程有且只有一个解,利用根的判别式得出K的值,从而得到函数表达式;(3)取时,作出函数图象,观察图象可得到结论.【题目详解】(1)证明:将和这两函数看成两个不定方程,联立方程组得:两边同时乘得,整理后得利用计算验证得:∵所以方程组无解即没有公共解,也就是两函数图象没有交点(交点即公共点)(2)向上平移4个单位后,这时刚好与双曲线有且只有一个交点.联立方程组得:两边同时乘得,整理后得因为直线与双曲线有且只有一个交点,∴方程有且只有一个解,即:,将方程对应的值代入判别式得:解得综上所述:当时,,当时,,(3)题目要求负实数的值,所以我们取时的函数图象情况.图象大致如下图所示:计算可得交点坐标,要使,即函数的图象在函数图象的上方即可,由图可知,当或时函数的图象在函数,图象的上方,即当或时满足【题目点拨】本题考查了反比例函数和一次函数,是一个综合题,解题时要运用数形结合的思想.21、(1)见解析;(2)见解析.【解题分析】
(1)由折叠得到D=∠FGH=90°,∠C=∠H=90°,EC=EH,由矩形得出边平行,内角为直角,将问题转化到△EGH中,由30°所对的直角边等于斜边的一半,利用等量代换可得结论;
(2)由轴对称的性质,对称轴垂直平分对应点所连接的线段,垂直于同一直线的两条直线互相平行得出结论.【题目详解】证明:(1)由折叠知:CE=HE,在矩形ABCD中,AD//BC,∴∠AFG=∠FGE=∴∠HGE=∠FGH-∠FGE=在RtΔGHE中,∠HGE=∴HE=又∵CE=HE,∴CE=12(2)连接DG、CH由折叠知:点D和G、点C和点H都关于直线EF成轴对称∴EF⊥DG,∴DG//CH【题目点拨】考查矩形的性质、轴对称的性质,直角三角形的性质等知识,合理的将问题转化到一个含有30°的直角三角形是解决问题的关键.22、(1)k=−2,y=x+,;(2)(1,2);(3)(0,)【解题分析】
(1)把A(-1,2)代入两个解析式即可得到结论;(2)根据关于y轴对称的点的特点即可得到结论;(3)作点A关于y轴对称A′,连接AA′交y轴于C,则△ABC的周长最小,解方程组得到B(-4,),得到A′B的解析式为y=,即可得到结论.【题目详解】(1)∵一次函数y=x+b的图象与反比例函数y=(x<0)的图象交于点A(−1,2),把A(−1,2)代入两个解析式得:2=×(−1)+b,2=−k,解得:b=,k=−2,∴一次函数解析式为:y=x+,反比例函数解析式为y=−;(2)∵点A(−1,2)与点A′关于y轴对称,∴A′(1,2),故答案为:(1,2);(3)作点A关于y轴对称A′,连接AA′交y轴于C,则△ABC的周长最小,由(2)知A′(1,2),解方程组,解得:,,∴B(−4,),设A′B的解析式为y=ax+c,把A′(1,2),B(−4,)代入得,解得:,∴A′B的解析式为y=,令x=0,∴y=,∴C(0,)【题目点拨】此题考查轴对称-最短路线问题,反比例函数与一次函数的交点问题,解题关键在于将已知点代入解析式23、【几何背景】:详见解析;【知识迁移】:详见解析;【拓展应用】:【解题分析】
几何背景:由Rt△ABD中,AD1=AB1﹣BD1,Rt△ACD中,AD1=AC1﹣CD1,则结论可证.知识迁移:过P点作PE⊥AD,延长EP交BC于F,可证四边形ABFE,四边形DCFE是矩形.根据上面的结论求得PA、PB、PC、PD之间的数量关系.拓展应用:根据勾股定理可列方程组,可求PD=c,PC=c即可得.【题目详解】解:几何背景:在Rt△ABD中,AD1=AB1﹣BD1Rt△ACD中,AD1=AC1﹣CD1,∴AB1﹣BD1=AC1﹣CD1,∴AB1﹣AC1=BD1﹣CD1.知识迁移:BP1﹣PC1=BF1﹣CF1.如图:过P点作PE⊥AD,延长EP交BC于F∴四边形ABCD是矩形∴AD∥BC∠BAD=∠ADC=∠DCB=∠ABC=90°又∵PE⊥AD∴PF⊥BC∵PE是△APD的高∴PA1﹣PD1=AE1﹣DE1.∵PF是△PBC的高∴BP1﹣PC1=BF1﹣CF1.∵∠BAD=∠ADC=∠DCB=∠ABC=90°,PE⊥AD,PF⊥BC∴四边形ABFE,四边形DCFE是矩形∴AE=BF,CF=DE∴PA1﹣PD1=BP1﹣PC1.拓展应用:∵PA1﹣PD1=BP1﹣PC1.∴PA1﹣PB1=c1.∴PD1﹣PC1=c1.且PD1+PC1=c1.∴PD=c,PC=c∴,故答案为.【题目点拨】本题考查了四边形的综合题,矩形的性质,勾股定理,关键是利用勾股定理列方程组.24、(1)A(-4,0);B(0,4);C(2,0);(2)①点E的位置见解析,E(,0);②D点的坐标为(-1,3)或(,)【解题分析】
(1)先利用一次函数图象上点的坐标特点求得点A、B的坐标;然后把B点坐标代入y=−2x+b求出b的值,确定此函数解析式,然后再求C点坐标;
(2)①根据轴对称—最短路径问题画出点E的位置,由待定系数法确定直线DB1的解析式为y=−3x−4,易得点E的坐标;
②分两种情况:当点D在AB上时,当点D在BC上时.当点D在AB上时,由等腰直角三角形的性质求得D点的坐标为(−1,3);当点D在BC上时,设AD交y轴于点F,证△AOF与△BOC全等,得OF=2,点F的坐标为(0,2),求得直线AD的解析式为,与y=−2x+4组成方程组,求得交点D的坐标为(,).【题目详解】(1)在y=x+4中,令x=0,得y=4,令y=0,得x=-4,∴A(-4,0),B(0,4)把B(0,4)代入y=-2x+b,得b=4,∴直线BC为:y=-2x+4在y=-2x+4中,令y=0,得x=2,∴C点的坐标为(2,0);(2)①如图∵点D是AB的中点∴D(-2,2)点B关于x轴的对称点B1的坐标为(0,-4),设直线DB1的解析式为,把D(-2,2),B1(0,-4)代入,得,解得k=-3,b=-4,∴该直线为:y=-3x-4,令y=0,得x=,∴E点的坐标为(,0).②存在,D点的坐标为(-1,3)或(,).当点D在AB上时,∵OA=OB=4,∴∠BAC=45°,∴△ACD是以∠ADC为直角的等腰直角三角形,∴点D的横坐标为,当x=-1时,y=x+4=3,∴D点的坐标为(-1,3);当点D在BC上时,如图,设AD交y轴于点F.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 气候政策评估-洞察及研究
- 预计负载预测-洞察及研究
- 湿地生态修复模式-洞察及研究
- 跨文化心理干预-第1篇-洞察及研究
- 供应链韧性提升策略-第3篇-洞察及研究
- 渔业资源保护技术-洞察及研究
- DeFi流动性挖矿激励机制-洞察及研究
- 微观环境监测技术-洞察及研究
- 植物种群遗传多样性维持-洞察及研究
- 女性作家生存状态-洞察及研究
- 湖南省长沙市2024年七年级下学期数学期末考试试题附答案
- 消化道穿孔患者的护理课件
- 作物栽培学智慧树知到期末考试答案章节答案2024年中国农业大学
- 汽车修理厂应急预案汽修厂安全生产事故应急救援综合预案2019-2020新标准完整版实施文件
- 建筑智能化系统工程挂靠协议
- 司法鉴定的奥秘智慧树知到期末考试答案2024年
- 2024春期国开电大专本科《教育学》在线形考 (形考论坛4)试题及答案
- MOOC 高速铁路运营与维护-西南交通大学 中国大学慕课答案
- 11-轮藻植物门课件
- (2024年)健康评估教学教案心电图检查教案
- 方法模型:展开图、还原立体图形
评论
0/150
提交评论