2024届山东省滨州市惠民县数学八下期末教学质量检测试题含解析_第1页
2024届山东省滨州市惠民县数学八下期末教学质量检测试题含解析_第2页
2024届山东省滨州市惠民县数学八下期末教学质量检测试题含解析_第3页
2024届山东省滨州市惠民县数学八下期末教学质量检测试题含解析_第4页
2024届山东省滨州市惠民县数学八下期末教学质量检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省滨州市惠民县数学八下期末教学质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.下列式子成立的是()A.=3 B.2﹣=2 C.= D.()2=62.如图,▱ABCD的对角线AC,BD交于点O,已知,,,则的周长为A.13 B.17 C.20 D.263.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于()A.cm B.2cm C.3cm D.4cm4.下列各式计算正确的是()A.+= B.2﹣=C. D.÷=5.在下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.6.矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为()A.3 B. C.2或3 D.3或7.如图①,在正方形ABCD中,点E是AB的中点,点P是对角线AC上一动点。设PC的长度为x,PE与PB的长度和为y,图②是y关于x的函数图象,则图象上最低点H的坐标为()A.(1,2) B.() C. D.8.已知正比例函数y=(m﹣8)x的图象过第二、四象限,则m的取值范围是()A.m≥8 B.m>8 C.m≤8 D.m<89.▱ABCD中,如果,那么、的值分别是A., B.,C., D.,10.下列等式正确的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在四边形ABCD中,∠A=90°,M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),E、F分别为DM,MN的中点,若AB=23, 12.函数的自变量x的取值范围是______.13.正方形、、、…按如图所示的方式放置.点、、、…和点、、、…分别在直线和轴上,则点的坐标是__________.(为正整数)14.如图,已知图中的每个小方格都是边长为工的小正方形,每个小正方形的顶点称为格点,若与是位似图形,且顶点都在格点上,则位似中心的坐标是______.15.已知,,则__________.16.如图,点,是的边,上的点,已知,,分别是,,中点,连接BE,FH,若BD=8,CE=6,,∠FGH=90°,则FH长为_______.17.如图,把一张矩形的纸沿对角线BD折叠,若AD=8,AB=6,则BE=__.18.因式分解:x2﹣x=______.三、解答题(共66分)19.(10分)某校八年级甲,乙两班各有名学生,为了解这两个班学生身体素质情况,进行了抽样调查.从这两个班各随机抽取名学生进行身体素质测试,测试成绩如下:甲班乙班整理上面数据,得到如下统计表:样本数据的平均数、众数.中位数如下表所示:根据以上信息,解答下列问题:(1)求表中的值(2)表中的值为()(3)若规定测试成绩在分以上(含分)的学生身体素质为优秀,请估计乙班名学生中身体素质为优秀的学生的人数.20.(6分)如图,在四边形ABCD中,AB∥DC,边AD与BC不平行(1)若∠A=∠B,求证:AD=BC.(2)已知AD=BC,∠A=70°,求∠B的度数.21.(6分)已知关于的分式方程的解是负数,求的取值范围.22.(8分)分解因式:(1);(2)。23.(8分)我市进行运河带绿化,计划种植银杏树苗,现甲、乙两家有相同的银杏树苗可供选择,其具体销售方案如下:甲:购买树苗数量不超过500棵时,销售单价为800元棵;超过500棵的部分,销售单价为700元棵.乙:购买树苗数量不超过1000棵时,销售单价为800元棵;超过1000棵的部分,销售单价为600元棵.设购买银杏树苗x棵,到两家购买所需费用分别为元、元(1)该景区需要购买800棵银杏树苗,若都在甲家购买所要费用为______元,若都在乙家购买所需费用为______元;(2)当时,分别求出、与x之间的函数关系式;(3)如果你是该景区的负责人,购买树苗时有什么方案,为什么?24.(8分)已知:如图,在菱形ABCD中,BE⊥AD于点E,延长AD至F,使DF=AE,连接CF.(1)判断四边形EBCF的形状,并证明;(2)若AF=9,CF=3,求CD的长.25.(10分)已知一次函数y=kx+b的图象与直线y=﹣2x+1的交点M的横坐标为1,与直线y=x﹣1的交点N的纵坐标为2,求这个一次函数的解析式.26.(10分)如图,已知点E,C在线段BF上,BE=EC=CF,AB∥DE,∠ACB=∠F.(1)求证:△ABC≌△DEF;(2)求证:四边形ACFD为平行四边形.

参考答案一、选择题(每小题3分,共30分)1、A【解题分析】

运用二次根式的相关定义、运算、化简即可求解.【题目详解】解:A:是求的算术平方根,即为3,故正确;B:2﹣=,故B错误;C:上下同乘以,应为,故C错误;D:的平方应为3,而不是6,故D错误.故答案为A.【题目点拨】本题主要考查二次根式的定义、运算和化简;考查知识点较多,扎实的基础是解答本题的关键.2、B【解题分析】

由平行四边形的性质得出,,,即可求出的周长.【题目详解】四边形ABCD是平行四边形,,,,的周长.故选:B.【题目点拨】本题主要考查了平行四边形的性质,并利用性质解题平行四边形基本性质:平行四边形两组对边分别平行;平行四边形的两组对边分别相等;平行四边形的两组对角分别相等;平行四边形的对角线互相平分.3、C【解题分析】

根据在直角三角形中,30度角所对直角边等于斜边的一半得出AE=2ED,求出ED,再根据角平分线到两边的距离相等得出ED=CE,即可得出CE的值.【题目详解】∵ED⊥AB,∠A=30°,∴AE=2ED.∵AE=6cm,∴ED=3cm.∵∠ACB=90°,BE平分∠ABC,∴ED=CE,∴CE=3cm.故选C.【题目点拨】本题考查了含30°角的直角三角形,用到的知识点是在直角三角形中,30度角所对的直角边等于斜边的一半和角平分线的基本性质,关键是求出ED=CE.4、B【解题分析】A选项中,因为,所以A中计算错误;B选项中,因为,所以B中计算正确;C选项中,因为,所以C中计算错误;D选项中,因为,所以D中计算错误.故选B.5、C【解题分析】试题分析:利用:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,可知A既不是轴对称图形,也不是中心对称图形,故不正确;B是轴对称图形,但不是中心对称图形,故不正确;C既是轴对称图形,也是中心对称图形,故正确;D不是轴对称图形,但是中心对称图形,故不正确.故选C考点:1、中心对称图形,2、轴对称图形6、D【解题分析】

当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如图2所示.此时ABEB′为正方形.【题目详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC,在Rt△ABC中,AB=1,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=1,∴CB′=5-1=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4-x)2,解得x=,∴BE=;②当点B′落在AD边上时,如图2所示.此时ABEB′为正方形,∴BE=AB=1.综上所述,BE的长为或1.故选D.【题目点拨】本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.7、C【解题分析】

如图,连接PD.由B、D关于AC对称,推出PB=PD,推出PB+PE=PD+PE,推出当D、P、E共线时,PE+PB的值最小,观察图象可知,当点P与A重合时,PE+PB=3,推出AE=EB=1,AD=AB=2,分别求出PB+PE的最小值,PC的长即可解决问题.【题目详解】如图,连接PD.∵B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE,∴当D、P、E共线时,PE+PB的值最小,如下图:当点P与A重合时,PE+PB=3,,AD=AB=2在RT△AED中,DE=点H的纵坐标为点H的横坐标为H故选C.【题目点拨】本题考查正方形的性质,解题关键在于熟练掌握正方形性质及计算法则.8、D【解题分析】

根据正比例函数的性质,首先根据图象的象限来判断m﹣1的大小,进而计算m的范围.【题目详解】解:∵正比例函数y=(m﹣1)x的图象过第二、四象限,∴m﹣1<0,解得:m<1.故选:D.【题目点拨】本题主要考查正比例函数的性质,根据一次函数的一次项系数的正负确定图象所在的象限.9、B【解题分析】

根据平行四边形的对角相等,邻角互补,已知∠B,即可求出∠D,∠A的值.【题目详解】解:∵四边形ABCD是平行四边形,∴∠D=∠B=100°,AD//BC,∴∠A=180°-∠B=180°-100°=80°,故选B.【题目点拨】本题考查了平行四边形的性质,熟练掌握平行四边形的性质是解题的关键.平行四边形的基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.10、B【解题分析】

根据平方根、算术平方根的求法,对二次根式进行化简即可.【题目详解】A.=2,此选项错误;B.=2,此选项正确;C.=﹣2,此选项错误;D.=2,此选项错误;故选:B.【题目点拨】本题考查了二次根式的化简和求值,是基础知识比较简单.二、填空题(每小题3分,共24分)11、1【解题分析】

连接BD、DN,根据勾股定理求出BD,根据三角形中位线定理解答.【题目详解】解:连接BD、DN,在RtΔABD中,∵点E、F分别为DM、MN的中点,∴EF=1由题意得,当点N与点B重合时,DN最大,∴DN的最大值是4,∴EF长度的最大值是1,故答案为:1.【题目点拨】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.12、:x≠﹣1.【解题分析】

根据分母不等于0列出不等式求解即可.【题目详解】解:由题意得,x+1≠0,解得x≠﹣1.故答案为x≠﹣1.【题目点拨】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13、【解题分析】分析:由图和条件可知A1(0,1)A2(1,2)A3(3,4),B1(1,1),B2(3,2),Bn的横坐标为An+1的横坐标,纵坐标为An的纵坐标,又An的横坐标数列为An=2n-1-1,所以纵坐标为(2n-1),然后就可以求出Bn的坐标为[A(n+1)的横坐标,An的纵坐标].详解:由图和条件可知A1(0,1)A2(1,2)A3(3,4),B1(1,1),B2(3,2),∴Bn的横坐标为An+1的横坐标,纵坐标为An的纵坐标,又An的横坐标数列为An=2n-1-1,所以纵坐标为2n-1,∴Bn的坐标为[A(n+1)的横坐标,An的纵坐标]=(2n-1,2n-1).故答案为(2n-1,2n-1).点睛:本题主要考查函数图象上点的坐标特征及正方形的性质,解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.14、(8,0)【解题分析】

连接任意两对对应点,看连线的交点为那一点即为位似中心.【题目详解】解:连接BB1,A1A,易得交点为(8,0).故答案为:(8,0).【题目点拨】用到的知识点为:位似中心为位似图形上任意两对对应点连线的交点.15、1【解题分析】

把x与y代入计算即可求出xy的值【题目详解】解:当,时,∴;故答案为:1.【题目点拨】此题考查了二次根式的混合运算,熟练掌握运算法则是解本题的关键.16、【解题分析】

利用三角形中位线求得线段FG、GH;再利用勾股定理即可求出FH的长.【题目详解】解:∵,,分别是,,中点∴∵∠FGH=90°∴为直角三角形根据勾股定理得:故答案为:5【题目点拨】本题考查了三角形中位线定理以及勾股定理,熟练掌握三角形中位线定理是解答本题的关键.17、【解题分析】试题解析:∵AD∥BC,∴∠EDB=∠CBD,又∠EBD=∠CBD,∴∠EBD=∠EDB,∴EB=ED,又BC′=BC=AD,∴EA=EC′,在Rt△EC′D中,DE2=EC′2+DC′2,即DE2=(8-DE)2+62,解得DE=.18、x(x﹣1)【解题分析】分析:提取公因式x即可.详解:x2−x=x(x−1).故答案为:x(x−1).点解:本题主要考查提公因式法分解因式,准确找出公因式是解题的关键.三、解答题(共66分)19、(1)72;(2)70;(3)20.【解题分析】

(1)利用平均数的公式,可以求出平均数m;(2)由众数的概念可得乙班的众数n的值是70;(3)用总人数乘以后两组数的频率之和即可得出答案.【题目详解】(1)的值为.(2)整理乙班数据可知70出现的次数最多,为三次,则乙班的众数n=(3)(人)答:乙班名学生中身体素质为优秀的学生约为人.【题目点拨】此题考查了频率分布直方图、频率分布表、平均数、众数,关键是读懂频数分布直方图和统计表,能获取有关信息,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20、(1)证明见解析;(2)∠B=70°.【解题分析】

(1)过C作CE∥AD于点E,可证明四边形ADCE是平行四边形,根据平行四边形的性质可得AD=CE,根据AD∥CE,可得∠A=∠CEB,根据等量代换可得∠CEB=∠B,进而得到CE=BC,从而可得AD=BC;(2)过C作CE∥AD,可证明四边形ADCE是平行四边形,根据平行四边形的性质可得AD=CE,再由条件AD=BC可得CE=BC,根据等边对等角可得∠B=∠CEB,再根据平行线的性质可得∠A=∠CEB,利用等量代换可得∠B=∠A.【题目详解】(1)证明:过C作CE∥AD于点E,∵AB∥DC,CE∥AD∴四边形ADCE是平行四边形,∴AD=CE,∵AD∥CE,∴∠A=∠CEB,∵∠A=∠B,∴∠CEB=∠B,∴CE=CB,∴AD=CB;(2)过C作CE∥AD于点E,∵AB∥DC,CE∥AD∴四边形ADCE是平行四边形,∴AD=CE,∵AD=BC,∴CE=CB,∴∠B=∠CEB,∵AD∥CE,∴∠A=∠CEB,∴∠B=∠A=70°.【题目点拨】本题主要考查平行四边形的判定及性质,等腰三角形的性质,掌握平行四边形的性质是解题的关键.21、且.【解题分析】

先解出关于的分式方程,根据解为负数,即可求得m的取值范围.【题目详解】由=1得,∴∵x<0,且x+1≠0∵<0且∴且【题目点拨】本题考查了分式方程的求解,考查了一元一次不等式的求解.根据解为负数,表示成不等式再求解是解题的关键.22、(1);(2).【解题分析】

(1)原式提取公因式,再利用平方差公式分解即可;

(2)原式提取公因式即可.【题目详解】解:(1)原式(2)原式【题目点拨】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法,正确运用公式是解本题的关键.23、(1)610000元,640000元;(2),;(3)见解析.【解题分析】

(1)由单价数量及可以得出购买树苗需要的费用;(2)根据当,由单价数量就可以得出购买树苗需要的费用表示出、与之间的函数关系式;(3)分类讨论,当,时,时,表示出、的关系式,就可以求出结论.【题目详解】解:由题意,得.

元,

元;

故答案为;640000

当时,,,x为正整数,

当时,到两家购买所需费用一样;

时,甲家有优惠而乙家无优惠,所以到甲家购买合算;当时,,解得,当时,到两家购买所需费用一样;

当y甲乙时,,

当时,到甲家购买合算;

当y甲乙时,,

当时,到乙家购买合算.

综上所述,当时或时,到两家购买所需费用一样;当时,到甲家购买合算;当时,到乙家购买合算.

【题目点拨】本题考查了运用一次函数的解析式解实际问题的运用,方案设计的运用,单价×数量=总价,解答时求出一次函数的解析式是关键.24、(1)四边形EBCF是矩形,证明见解析;(2)CD=5【解题分析】

(1)由菱形的性质证得EF=BC,由此证明四边形EBCF是平行四边形.,再利用BE⊥AD即可证得四边形EBCF是矩形;(2)设CD=x,根据菱形的性质及矩形的性质得到DF=9-x,再利用勾股定理求出答案.【题目详解】(1)四边形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论