版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省南京市新城中学数学八年级第二学期期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.菱形的周长等于其高的8倍,则这个菱形的较大内角是()A.30° B.120° C.150° D.135°2.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.23.等式成立的条件是()A. B. C.x>2 D.4.在□ABCD中,∠A:∠B=7:2,则∠C等于()A.40° B.80° C.120° D.140°5.若是完全平方式,则符合条件的k的值是()A.±3 B.±9 C.-9 D.96.春节期间,王老师一家自驾游去了离家170千米的某地,下面是他们家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象,当他们离目的地还有20千米时,汽车一共行驶的时间是()A.2小时 B.2.2小时 C.2.25小时 D.2.4小时7.在平行四边形ABCD中,∠A+∠C=160°,则∠B的度数是()A.130° B.120° C.100° D.90°8.一次函数y=2x–6的图象不经过第()象限.A.一B.二C.三D.四9.下列各点中,与点(-3,4)在同一个反比例函数图像上的点是A.(2,-3) B.(3,4) C.(2,-6) D.(-3,-4)10.如图,在□ABCD中,AC与BD相交于点O,点E是边BC的中点,AB=4,则OE的长是()A.2 B.C.1 D.二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,矩形OABC的顶点A在y轴正半轴上,边AB、OA(AB>OA)的长分别是方程x2−11x+24=0的两个根,D是AB上的一动点(不与A.B重合).AB=8,OA=3.若动点D满足△BOC与AOD相似,则直线OD的解析式为____.12.已知a,b为一元二次方程x2+2x﹣9=0的两个根,那么a2+a﹣b的值为.13.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好是9.4环,方差分别是,,,,在本次射击测试中,成绩最稳定的是_____.14.如果直线y=kx+3与两坐标轴围成三角形的面积为3,则k的值为_____.15.如图,平行四边形的对角线相交于点,且,过点作,交于点.若的周长为,则______.16.如图,这个图案是用形状、大小完全相同的等腰梯形密铺而成的,则这个图案中的等腰梯形的底角(指锐角)是_________度.17.若点A(m+2,3)与点B(﹣4,n+5)关于y轴对称,则m+n=_______.18.将直线y=﹣4x+3向下平移4个单位,得到的直线解析式是_____.三、解答题(共66分)19.(10分)某加工车间共有20名工人,现要加工1800个甲种零件,1000个乙种零件,已知每人每天加工甲种零件30个或乙种零件50个(每人只能加工一种零件),怎样分工才能确保同时完成两种零件的加工任务?20.(6分)已知:在平面直角坐标系中,直线分别交、轴于点A、B两点,OA=5,∠OAB=60°.(1)如图1,求直线AB的解析式;(2)如图2,点P为直线AB上一点,连接OP,点D在OA延长线上,分别过点P、D作OA、OP的平行线,两平行线交于点C,连接AC,设AD=m,△ABC的面积为S,求S与m的函数关系式;(3)如图3,在(2)的条件下,在PA上取点E,使PE=AD,连接EC,DE,若∠ECD=60°,四边形ADCE的周长等于22,求S的值.21.(6分)先化简,再求值:(1﹣)÷.其中a从0,1,2,﹣1中选取.22.(8分)李刚家去年养殖的“丰收一号”多宝鱼喜获丰收,上市20天全部售完,李刚对销售情况进行了跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图所示.(1)观察图象,直接写出日销售量的最大值;(2)求李刚家多宝鱼的日销售量y与上市时间x的函数解析式.23.(8分)甲、乙两名射击运动员进行射击比赛,两人在相同的条件下各射击10次,射击的成绩如图所示.根据图中信息,解答下列问题:(1)算出乙射击成绩的平均数;(2)经计算,甲射击成绩的平均数为8,乙射击成绩的方差为1.2,请你计算出甲射击成绩的方差,并判断谁的射击成绩更加稳定.24.(8分)如图,在网格图中,平移使点平移到点,每小格代表1个单位。(1)画出平移后的;(2)求的面积.25.(10分)师徒两人分别加工1200个零件,已知师傅每天加工零件的个数是徒弟每天加工零件个数的1.5倍,结果师傅比徒弟少用10天完成,求徒弟每天加工多少个零件?26.(10分)如图,已知,直线y=2x+3与直线y=-2x-1,求ΔABC的面积.
参考答案一、选择题(每小题3分,共30分)1、C【解题分析】
根据菱形四条边相等的性质,构造直角三角形DEC,从而利用30°角所对直角边等于斜边一半可求出∠DCE,进而可得出答案.【题目详解】解:设菱形的边长为a,高为h,则依题意,4a=8h,即a=2h,过点D作BC边上的高,与BC的延长线交于点E,∵a=2h,即DC=2DE,∴∠DCE=30°,∴菱形的较大内角的外角为30°,∴菱形的较大内角是150°.故答案为:C.【题目点拨】此题考查菱形的知识,熟悉菱形的性质,及一些特殊的直角是解题的关键,画出图形再解题有助于理清思路.2、C【解题分析】过点P作PE⊥BC于E,
∵AB∥CD,PA⊥AB,
∴PD⊥CD,
∵BP和CP分别平分∠ABC和∠DCB,
∴PA=PE,PD=PE,
∴PE=PA=PD,
∵PA+PD=AD=8,
∴PA=PD=1,
∴PE=1.
故选C.3、C【解题分析】
直接利用二次根式的性质得出关于x的不等式进而求出答案.【题目详解】解:∵等式=成立,∴,解得:x>1.故选:C.【题目点拨】此题主要考查了二次根式的性质,正确解不等式组是解题关键.4、A【解题分析】
根据平行四边形的性质得到AD∥BC,AB∥CD,由平行线的性质得到∠A,再由平行线的性质得到∠C=40°.【题目详解】根据题意作图如下:因为BCD是平行四边形,所以AD∥BC,AB∥CD;因为AD∥BC,所以∠A是∠B的同的同旁内角,即∠A+∠B=180°;又因为∠A:∠B=7:2,所以可得∠A==140°;又因为AB∥CD,所以∠C是∠A的同旁内角,所以∠C=180°-140°=40°.故选择A.【题目点拨】本题考查平行四边形的性质和平行线的性质,解题的关键是掌握平行四边形的性质和平行线的性质.5、D【解题分析】
根据是一个完全平方式,可得,据此求解.【题目详解】解:∵是一个完全平方式∴∴故选:D【题目点拨】此题主要考查了完全平方公式的应用,要熟练掌握,解答此题的关键是要明确:(a±b)1=a1±1ab+b1.6、C【解题分析】
先求出AB段的解析式,再将y=150代入求解即可.【题目详解】设AB段的函数解析式是y=kx+b,y=kx+b的图象过A(1.5,90),B(2.5,170),,解得∴AB段函数的解析式是y=80x-30,离目的地还有20千米时,即y=170-20=150km,当y=150时,80x-30=150解得:x=2.25h,故选C.【题目点拨】本题考查了一次函数的应用,正确掌握待定系数法并弄清题意是解题的关键.7、C【解题分析】分析:直接利用平行四边形的对角相等,邻角互补即可得出答案.详解:如图所示:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°.∵∠A+∠C=160°,∴∠A=∠C=80°,∴∠B的度数是:100°.故选C.点睛:本题主要考查了平行四边形的性质,正确把握平行四边形各角之间的关系是解题的关键.8、B【解题分析】分析:根据一次函数图象与系数的关系的关系解答即可.详解:∵2>0,-6<0,∴一次函数y=2x–6的图象经过一、三、四象限,不经过第二象限.故选B.点睛:本题考查了一次函数图象与系数的关系:对于y=kx+b(k为常数,k≠0),当k>0,b>0,y=kx+b的图象在一、二、三象限;当k>0,b<0,y=kx+b的图象在一、三、四象限;当k<0,b>0,y=kx+b的图象在一、二、四象限;当k<0,b<0,y=kx+b的图象在二、三、四象限.9、C【解题分析】
先根据反比例函数中k=xy的特点求出k的值,再对各选项进行逐一检验即可.【题目详解】∵反比例函数y=kx过点(−3,4),∴k=(−3)×4=−12,A.∵2×3=6≠−12,∴此点不与点(−3,4)在同一个反比例函数图象上,故本选项错误;B.∵3×4=12≠−12,∴此点不与点(−3,4)在同一个反比例函数图象上,故本选项错误;C.∵2×-6=−12,∴此点与点(−3,4)在同一个反比例函数图象上,故本选项正确;D.∵(−3)×(−4)=12≠−12,∴此点不与点(−3,4)在同一个反比例函数图象上,故本选项错误。故选C.【题目点拨】此题考查反比例函数图象上点的坐标特征,解题关键在于求出k的值10、A【解题分析】
根据平行四边形的性质得BO=DO,所以OE是△ABC的中位线,根据三角形中位线定理三角形的中位线平行于第三边并且等于第三边的一半.【题目详解】解:在▱ABCD中,AC与BD相交于点O,
∴BO=DO,
∵点E是边BC的中点,
所以OE是△ABC的中位线,
∴OE=AB=1.
故选A.【题目点拨】本题利用平行四边形的性质和三角形的中位线定理求解,需要熟练掌握.二、填空题(每小题3分,共24分)11、y=−83【解题分析】
分两种情况:△BOC∽△DOA和△BOC∽△ODA,由相似三角形的对应边成比例求得点D的坐标,由待定系数法求得直线OD的解析式;【题目详解】若△BOC∽△DOA.则BCOC即38所以AD=98若△BOC∽△ODA,可得AD=8(与题意不符,舍去)设直线OD解析式为y=kx,则3=−98k即k=−83直线OD的解析式为y=−83x【题目点拨】此题考查一次函数的性质,解题关键在于利用相似三角形的性质求解.12、1【解题分析】
由根与系数的关系可得a+b=﹣2,a2+2a-9=0,继而将a2+a﹣b变形为a2+2a-(a+b),然后将数值代入进行计算即可得.【题目详解】∵a,b为一元二次方程x2+2x﹣9=0的两根,∴a+b=﹣2,a2+2a-9=0,∴a2+2a=9,∴a2+a﹣b=a2+2a﹣a-b=(a2+2a)-(a+b)=9+2=1,故答案为1.13、丙【解题分析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【题目详解】甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.4环,方差分别是0.90,1.22,0.43,1.68,∴S2丙<S2甲<S2乙<S2丁,∴成绩最稳定的同学是丙.【题目点拨】本题考查方差的意义,方差越大,数据的波动越大;方差越小,数据波动越小,学生们熟练掌握即可.14、±【解题分析】
找到函数y=kx+3与坐标轴的交点坐标,利用三角形面积公式表示出面积,解方程即可.【题目详解】解:∵直线y=kx+3与两坐标轴的交点为(0,3)(,0)∴与两坐标轴围成三角形的面积=·3·||=3解得:k=故答案为【题目点拨】本题考查了一次函数与坐标轴的交点问题,属于简单题,明确函数与x轴的交点有两个是解题关键.15、6.【解题分析】
根据题意,OM垂直平分AC,所以MC=MA,因此△CDM的周长=AD+CD,即可解答.【题目详解】∵ABCD是平行四边形,∴OA=OC,AD=BC,AB=CD∵OM⊥AC,∴AM=MC.∴△CDM的周长=AD+CD=9,BC=9-3=6故答案为6.【题目点拨】此题考查平行四边形的性质,解题关键在于得出MC=MA16、60°【解题分析】
根据图案的特点,可知密铺的一个顶点处的周角,由3个完全相同的等腰梯形的较大内角组成,即可求出等腰梯形的较大内角的度数,进而即可得到答案.【题目详解】由图案可知:密铺的一个顶点处的周角,由3个完全相同的等腰梯形的较大内角组成,∴等腰梯形的较大内角为360°÷3=120°,∵等腰梯形的两底平行,∴等腰梯形的底角(指锐角)是:180°-120°=60°.故答案是:60°.【题目点拨】本题主要考查等腰梯形的性质以及平面镶嵌,掌握平面镶嵌的性质是解题的关键.17、1.【解题分析】试题分析:关于y轴对称的两点横坐标互为相反数,纵坐标相等,则m+2=4,n+5=3,解得:m=2,n=-2,则m+n=2+(-2)=1.考点:关于y轴对称18、y=﹣4x﹣1【解题分析】
根据上加下减的法则可得出平移后的函数解析式.【题目详解】解:将直线y=﹣4x+3向下平移4个单位得到直线l,则直线l的解析式为:y=﹣4x+3﹣4,即y=﹣4x﹣1.故答案是:y=﹣4x﹣1【题目点拨】本题考查了一次函数图象与几何变换的知识,难度不大,掌握上加下减的法则是关键.三、解答题(共66分)19、安排15名工人加工甲种零件,5名工人加工乙种零件.【解题分析】
设安排人生产甲种零件,则(20-x)人生产乙种零件,根据“生产甲种零件的时间生产乙种零件的时间”列方程组求解可得.【题目详解】解:设安排x名工人加工甲种零件,则(20-x)人生产乙种零件,根据题意,得:.解这个方程,得经检验:是所列方程的解,且符合实际意义..答:安排15名工人加工甲种零件,5名工人加工乙种零件.【题目点拨】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.20、(1)直线解析式为;(2)S=;(3).【解题分析】
(1)先求出点B坐标,设AB解析式为,把点A(5,0),B(0,)分别代入,利用待定系数法进行求解即可;(2)由题意可得四边形ODCP是平行四边形,∠OAB=∠APC=60°,则有PC=OD=5+m,∠PCH=30°,过点C作CH⊥AB,在Rt△PCH中利用勾股定理可求得CH=,再由S=ABCH代入相关数据进行整理即可得;(3)先求得∠PEC=∠ADC,设∠OPA=,则∠OPC=∠ADC=∠PEC=60°+,在BA延长线上截取AK=AD,连接OK,DK,DE,证明△ADK是等边三角形,继而证明△PEC≌△DKO,通过推导可得到OP=OK=CE=CD,再证明△CDE是等边三角形,可得CE=CD=DE,连接OE,证明△OPE≌△EDA,继而可得△OAE是等边三角形,得到OA=AE=5,根据四边形ADCE的周长等于22,可得ED=,过点E作EN⊥OD于点N,则DN=,由勾股定理得,可得关于m的方程,解方程求得m的值后即可求得答案.【题目详解】(1)在Rt△ABO中OA=5,∠OAB=60°,∴∠OBA=30°,AB=10,由勾股定理可得OB=,∴B(0,),设AB解析式为,把点A(5,0),B(0,)分别代入,得,∴,∴直线解析式为;(2)∵CP//OD,OP//CD,∴四边形ODCP是平行四边形,∠OAB=∠APC=60°,∴PC=OD=5+m,∠PCH=30°,过点C作CH⊥AB,在Rt△PCH中PH=,由勾股定理得CH=,∴S=ABCH=;(3)∵∠ECD=∠OAB=60°,∴∠EAD+∠ECD=180°,∠CEA+∠ADC=180°,∴∠PEC=∠ADC,设∠OPA=,则∠OPC=∠ADC=∠PEC=60°+,在BA延长线上截取AK=AD,连接OK,DK,DE,∵∠DAK=60°,∴△ADK是等边三角形,∴AD=DK=PE,∠ODK=∠APC,∵PC=OD,∴△PEC≌△DKO,∴OK=CE,∠OKD=∠PEC=∠OPC=60°+,∠AKD=∠APC=60°,∴∠OPK=∠OKB,∴OP=OK=CE=CD,又∵∠ECD=60°,∴△CDE是等边三角形,∴CE=CD=DE,连接OE,∵∠ADE=∠APO,DE=CD=OP,∴△OPE≌△EDA,∴AE=OE,∠OAE=60°,∴△OAE是等边三角形,∴OA=AE=5,∵四边形ADCE的周长等于22,∴AD+2DE=17,∴ED=,过点E作EN⊥OD于点N,则DN=,由勾股定理得,即,解得,(舍去),∴S==20.【题目点拨】本题考查的四边形综合题,涉及了待定系数法,平行四边形的判定与性质,勾股定理,全等三角形的判定与性质,等边三角形的判定与性质,解一元二次方程等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.21、,【解题分析】
原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a=﹣1代入计算即可求出值.【题目详解】原式,当a=﹣1时,原式=.【题目点拨】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22、(1)日销售量的最大值为120千克;(2)李刚家多宝鱼的日销售量y与上市时间x的函数解析式为.【解题分析】分析:(1)观察函数图象,找出拐点坐标即可得出结论;(2)设李刚家多宝鱼的日销售量y与上市时间x的函数解析式为y=kx+b,分0≤x≤12和12<x≤20,找出图象上点的坐标,利用待定系数法即可求出函数解析式.详解:(1)观察图象,发现当x=12时,y=120为最大值,∴日销售量的最大值为120千克.(2)设李刚家多宝鱼的日销售量y与上市时间x的函数解析式为y=kx+b,当0≤x≤12时,有,解得:,∴此时日销售量y与上市时间x的函数解析式为y=10x;当12<x≤20时,有,解得:,∴此时日销售量y与上市时间x的函数解析式为y=﹣15x+1.综上可知:李刚家多宝鱼的日销售量y与上市时间x的函数解析式为y=.点睛:本题考查了一次函数的应用、一次函数的图象以及待定系数法求函数解析式,解题的关键是:(1)观察函数图象,找出最高点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 清洁工劳动合同范本
- 软件系统维护合同协议书范本
- 教育培训公司合伙协议书
- 2024年度建筑施工渣土运输合同
- 基于2024年度的设备采购合同的设备要求和交付时间
- 全国总代理合同
- 《信息经济学理论》课件
- 2024版股权置换与品牌营销服务合同2篇
- 《上财务观念》课件
- 婚内财产约定简单协议书范本
- 2024-2030年全球及中国松香药芯焊锡丝行业产销状况及投资前景预测报告
- 新修订《中华人民共和国保守国家秘密法》竞赛题库
- 幼儿园园安全培训
- 旧平房拆除施工方案
- 人教版语文高一上学期期末试题及解答参考(2024年)
- 预习-21《蝉》导学案
- 期中测试卷(试题)-2024-2025学年数学五年级上册北师大版
- 二年级上册-第7课-对折剪纸省公开课获奖课件说课比赛一等奖课件
- 2024-2030年中国药食同源市场运行现状及营销策略分析研究报告
- 幼小衔接背景下体验式学习在幼儿园语言教育活动中的应用
- 2024-2025形势与政策:发展新质生产力-推动高质量发展的内在要求和重要着力点
评论
0/150
提交评论