版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河北省石家庄市裕华区实验中学数学八下期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列各组数作为三角形的边长,其中不能构成直角三角形的是()A.6,8,10B.5,12,13C.9,40,41D.7,9,122.如图,过正方形的顶点作直线,点、到直线的距离分别为和,则的长为()A. B. C. D.3.如图,矩形ABCD的面积为10cm2,它的两条对角线交于点O1,以AB、AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交于点O2,同样以AB、AO2为两邻边作平行四边形ABC2O2,…,依此类推,则平行四边形ABCnOn的面积为()A.cm2 B.cm2 C.cm2 D.cm24.若关于x的一元二次方程kx2﹣2x﹣1=0有实数根,则k的取值范围是()A.k≥﹣1且k≠0 B.k≥﹣1 C.k≤1 D.k≤1且k≠05.若函数y=kx+b的图象如图所示,则关于x的不等式kx+b>0的解集为()A.x<2 B.x>2 C.x≤2 D.x≥26.已知不等式的解集是,下列各图中有可能是函数的图象的是()A. B.C. D.7.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A. B.2 C. D.38.在□中,,则的度数为(
)A. B. C. D.9.如果成立,那么实数a的取值范围是()A. B. C. D.10.下列计算结果正确的是()A.+= B.3-=3C.×= D.=511.若,,则代数式的值为A.1 B. C. D.612.如图所示,E、F分别是□ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=2cm2,S△BQC=4cm2,则阴影部分的面积为()A.6cm2 B.8cm2 C.10cm2 D.12cm2二、填空题(每题4分,共24分)13.如图,在矩形ABCD中,E是AD的中点,且若矩形ABCD的周长为48cm,则矩形ABCD的面积为______.14.若直角三角形斜边上的中线等于3,则这个直角三角形的斜边长为15.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,则∠1+∠2的度数为_____.16.已知,则_______.17.分解因式:x3-3x=______.18.解方程:(1)2x2﹣5x+1=0(用配方法);(2)5(x﹣2)2=2(2﹣x).三、解答题(共78分)19.(8分)(1)计算:﹣×(2)解方程:x2﹣4x﹣5=020.(8分)如图,点A(1,4)、B(2,a)在函数y=(x>0)的图象上,直线AB与x轴相交于点C,AD⊥x轴于点D.(1)m=;(2)求点C的坐标;(3)在x轴上是否存在点E,使以A、B、E为顶点的三角形与△ACD相似?若存在,求出点E的坐标;若不存在,说明理由.21.(8分)某校为选拔一名选手参加“美丽江门,我为侨乡做代言”主题演讲比赛,经研究,按下图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:结合以上信息,回答下列问题:(1)求服装项目在选手考评中的权数;(2)根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽江门,我为侨乡做代言”主题演讲比赛,并说明理由.22.(10分)某加工车间共有20名工人,现要加工1800个甲种零件,1000个乙种零件,已知每人每天加工甲种零件30个或乙种零件50个(每人只能加工一种零件),怎样分工才能确保同时完成两种零件的加工任务?23.(10分)我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.(发现与证明)▱ABCD中,AB≠BC,将△ABC沿AC翻折至△AB′C,连结B′D.结论1:△AB′C与▱ABCD重叠部分的图形是等腰三角形;结论2:B′D∥AC…(应用与探究)在▱ABCD中,已知BC=2,∠B=45°,将△ABC沿AC翻折至△AB′C,连结B′D.若以A、C、D、B′为顶点的四边形是正方形,求AC的长.(要求画出图形)24.(10分)解不等式组并求其整数解的和.解:解不等式①,得_______;解不等式②,得________;把不等式①和②的解集在数轴上表示出来:原不等式组的解集为________,由数轴知其整数解为________,和为________.在解答此题的过程中我们借助于数轴上,很直观地找出了原不等式组的解集及其整数解,这就是“数形结合的思想”,同学们要善于用数形结合的思想去解决问题.25.(12分)如图,在△ABC中,∠ACB=90°,AC=8,BC=1.CD⊥AB于点D.点P从点A出发,以每秒1个单位长度的速度沿线段AB向终点B运动.在运动过程中,以点P为顶点作长为2,宽为1的矩形PQMN,其中PQ=2,PN=1,点Q在点P的左侧,MN在PQ的下方,且PQ总保持与AC垂直.设P的运动时间为t(秒)(t>0),矩形PQMN与△ACD的重叠部分图形面积为S(平方单位).(1)求线段CD的长;(2)当矩形PQMN与线段CD有公共点时,求t的取值范围;(3)当点P在线段AD上运动时,求S与t的函数关系式.26.“母亲节”前夕,某花店用3000元购进了第一批盒装花,上市后很快售完,接着又用4000元购进第二批盒装花.已知第二批所购花的进价比第一批每盒少3元,且数量是第一批盒数的1.5倍.问第一批盒装花每盒的进价是多少元?
参考答案一、选择题(每题4分,共48分)1、D【解题分析】试题分析:A、∵62+82=102考点:勾股数.2、A【解题分析】
先证明△ABE≌△BCF,得到BE=CF=1,在Rt△ABE中利用勾股定理可得AB=2,由此可得AC长.【题目详解】解:∵四边形ABCD是正方形,
∴AB=AC,∠ABC=90°.
∵∠ABE+∠EAB=90°,∠ABE+∠CBF=90°,
∴∠EAB=∠CBF.
又∠AEB=∠CFB=90°,
∴△ABE≌BCF(AAS).
∴BE=CF=1.
在Rt△ABE中,利用勾股定理可得AB===2.
则AC=AB=2.
故选A.【题目点拨】本题主要考查了正方形的性质、全等三角形的判定和性质,以及勾股定理,解题的关键是通过全等转化线段使其划归于一直角三角形中,再利用勾股定理进行求解.3、D【解题分析】
根据矩形的性质对角线互相平分可知O1是AC与DB的中点,根据等底同高得到S△ABO1=S矩形,又ABC1O1为平行四边形,根据平行四边形的性质对角线互相平分,得到O1O2=BO2,所以S△ABO2=S矩形,…,以此类推得到S△ABO5=S矩形,而S△ABO5等于平行四边形ABC5O5的面积的一半,根据矩形的面积即可求出平行四边形ABC5O5和平行四边形AB∁nOn的面积.【题目详解】解:∵设平行四边形ABC1O1的面积为S1,∴S△ABO1=S1,又∵S△ABO1=S矩形,∴S1=S矩形=5=;设ABC2O2为平行四边形为S2,∴S△ABO2=S2,又∵S△ABO2=S矩形,∴S2=S矩形=;,…,∴平行四边形AB∁nOn的面积为(cm2).故选D.【题目点拨】此题考查了矩形及平行四边形的性质,要求学生审清题意,找出面积之间的关系,归纳总结出一般性的结论.考查了学生观察、猜想、验证及归纳总结的能力.4、A【解题分析】
根据一元二次方程的定义和判别式的意义得到k≠1且△=22-4k×(-1)≥1,然后求出两个不等式的公共部分即可.【题目详解】根据题意得k≠1且△=22-4k×(-1)≥1,解得k≥-1且k≠1.故选A.【题目点拨】本题考查了一元二次方程ax2+bx+c=1(a≠1)的根的判别式△=b2-4ac:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.5、A【解题分析】
根据函数y=kx+b的图象可以判断,要使y>0,即图象在x轴的上方,此时对应x的取值范围即为不等式kx+b>0的解集.【题目详解】∵函数y=kx+b过点,即当y=0时,x=2,由图象可知x<2时,函数图象在x轴的上方,即此时y>0,∴不等式kx+b>0的解集为x<2,故选:A.【题目点拨】考查了一次函数的图象和性质,数形结合的方法求解一次不等式的解集,熟练掌握函数的图象和性质以及和对应的一次不等式之间的关系是解题关键.6、A【解题分析】
不等式mx+n>0的解集为直线y=mx+n落在x轴上方的部分对应的x的取值范围是x>-2,根据图象判断即可求解.【题目详解】解:A、不等式mx+n>0的解集是x>-2,故选项正确;
B、不等式mx+n>0的解集是x<-2,故选项错误;
C、不等式mx+n>0的解集是x>2,故选项错误;
D、不等式mx+n>0的解集是x<2,故选项错误.
故选:A.【题目点拨】本题考查一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=mx+n的值大于0的自变量x的取值范围.7、C【解题分析】
证明△BNA≌△BNE,得到BA=BE,即△BAE是等腰三角形,同理△CAD是等腰三角形,根据题意求出DE,根据三角形中位线定理计算即可.【题目详解】解:∵BN平分∠ABC,BN⊥AE,∴∠NBA=∠NBE,∠BNA=∠BNE,在△BNA和△BNE中,,∴△BNA≌△BNE,∴BA=BE,∴△BAE是等腰三角形,同理△CAD是等腰三角形,∴点N是AE中点,点M是AD中点(三线合一),∴MN是△ADE的中位线,∵BE+CD=AB+AC=19-BC=19-7=12,∴DE=BE+CD-BC=5,∴MN=DE=.故选C.【题目点拨】本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.8、B【解题分析】
依据平行四边形的性质可得∠B=∠D,通过已知∠B+∠D=216°,求出∠B=108°,再借助∠A=180°﹣∠B即可.【题目详解】∵四边形ABCD是平行四边形,∴∠B=∠D,∠A+∠B=180°.∵∠B+∠D=216°,∴∠B=108°.∴∠A=180°﹣108°=72°.故选:B.【题目点拨】本题考查平行四边形的性质,解题的关键是掌握平行四边形的对角相等,邻角互补.9、B【解题分析】
即故选B.10、C【解题分析】选项A.不能计算.A错误.选项B.,B错误.选项C.,正确.选项D.,D错误.故选C.11、C【解题分析】
直接提取公因式将原式分解因式,进而将已知数值代入求出答案.【题目详解】,,.故选:.【题目点拨】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.12、A【解题分析】
连接E、F两点,由三角形的面积公式我们可以推出S△EFC=S△BCF,S△EFD=S△ADF,所以S△EFG=S△BCQ,S△EFP=S△ADP,因此可以推出阴影部分的面积就是S△APD+S△BQC.【题目详解】连接E、F两点,∵四边形ABCD是平行四边形,∴AB∥CD,∴△EFC的FC边上的高与△BCF的FC边上的高相等,∴S△EFC=S△BCF,∴S△EFQ=S△BCQ,同理:S△EFD=S△ADF,∴S△EFP=S△ADP,∵S△APD=1cm1,S△BQC=4cm1,∴S四边形EPFQ=6cm1,故阴影部分的面积为6cm1.故选A.【题目点拨】本题主要考查平行四边形的性质,三角形的面积,解题的关键在于求出各三角形之间的面积关系.二、填空题(每题4分,共24分)13、128【解题分析】
根据AB=DC,∠A=∠D,AE=DE,利用SAS可判定△ABE≌△DCE,根据全等三角形的性质可得:∠AEB=∠DEC,再根据BE⊥CE,可得:∠BEC=90°,进而可得:∠AEB=∠DEC=45°,因此∠EBC=∠ECD=45°,继而可得:AB=AE,DC=DE,即AD=2AB,根据周长=48,可求得:BC=16,AB=8,最后根据矩形面积公式计算可得:S=16×8=128cm².【题目详解】∵AB=DC,∠A=∠D,AE=DE,∴△ABE≌△DCE(SAS),∴∠AEB=∠DEC,∵BE⊥CE,
∴∠BEC=90°,
∵∠AEB+∠BEC+∠DEC=180°,∴∠AEB=∠DEC=45°,∴∠EBC=∠ECD=45°,∴AB=AE,DC=DE,即AD=2AB,又∵周长=48,∴BC=16,AB=8,S=16×8=128cm²,故答案为:128.【题目点拨】本题主要考查矩形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,解决本题的关键是要熟练掌握矩形性质,全等三角形,等腰直角三角形的判定和性质.14、1.【解题分析】
根据直角三角形斜边中线的性质即可得.【题目详解】已知直角三角形斜边上的中线等于3,根据直角三角形斜边上的中线等于斜边的一半可得这个直角三角形的斜边长为1.故答案为:1.15、45°.【解题分析】
首先过点B作BD∥l,由直线l∥m,可得BD∥l∥m,由两直线平行,内错角相等,可得出∠2=∠3,∠1=∠4,故∠1+∠2=∠3+∠4,由此即可得出结论.【题目详解】解:过点B作BD∥l,∵直线l∥m,∴BD∥l∥m,∴∠4=∠1,∠2=∠3,∴∠1+∠2=∠3+∠4=∠ABC,∵∠ABC=45°,∴∠1+∠2=45°.故答案为:45°.【题目点拨】此题考查了平行线的性质.解题时注意辅助线的作法,注意掌握两直线平行,内错角相等定理的应用.16、【解题分析】
先对变形,得到b=,然后将b=代入化简计算即可.【题目详解】解:由,b=则故答案为-2.【题目点拨】本题考查了已知等式,求另一代数式值的问题;其解答关键在于对代数式进行变形,寻找它们之间的联系17、【解题分析】
先提取公因式x后,再把剩下的式子写成x2-()2,符合平方差公式的特点,可以继续分解.【题目详解】x3-3x=x(x2-3),=.【题目点拨】本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.18、(1)x1=,x2=;(2)x1=2,x2=【解题分析】
(1)移项,系数化成1,配方,开方,即可得出两个一元一次方程,求出方程的解;(2)移项后分解因式,即可可得出两个一元一次方程,求出方程的解即可.【题目详解】解:(1),(2),,【题目点拨】本题考查了利用配方法、因式分解法解一元二次方程,正确计算是解题的关键.三、解答题(共78分)19、(1);(2)x=﹣1或x=1.【解题分析】
先化简二次根式、计算乘法,再合并即可得;
利用因式分解法求解可得.【题目详解】解:(1)原式=2﹣=2﹣=;(2)∵x2﹣4x﹣1=0,∴(x+1)(x﹣1)=0,则x+1=0或x﹣1=0,解得:x=﹣1或x=1.【题目点拨】此题考查解一元二次方程的方法与二次根式的混合运算,根据方程的特点,灵活选用适当的方法求得方程的解即可.20、(1)1;(2)C的坐标为(3,0);(3)(﹣2,0).【解题分析】试题分析:(1)把点代入求值.(2)先利用反比例函数求出A,B,点坐标,再利用待定系数法求直线方程.(3)假设存在E点,因为ACD是直角三角形,假设ABE也是直角三角形,利用勾股定理分别计算A,B,C,是直角时AB长度,均与已知矛盾,所以不存在.试题解析:解:(1)∵点A(1,1)在反比例函数y=(x>0)的图象上,∴m=1×1=1,故答案为1.(2)∵点B(2,a)在反比例函数y=的图象上,∴a==2,∴B(2,2).设过点A、B的直线的解析式为y=kx+b,∴,解得:,∴过点A、B的直线的解析式为y=﹣2x+2.当y=0时,有﹣2x+2=0,解得:x=3,∴点C的坐标为(3,0).(3)假设存在,设点E的坐标为(n,0).①当∠ABE=90°时(如图1所示),∵A(1,1),B(2,2),C(3,0),∴B是AC的中点,∴EB垂直平分AC,EA=EC=n+3.由勾股定理得:AD2+DE2=AE2,即12+(x+1)2=(x+3)2,解得:x=﹣2,此时点E的坐标为(﹣2,0);②当∠BAE=90°时,∠ABE>∠ACD,故△EBA与△ACD不可能相似;③当∠AEB=90°时,∵A(1,1),B(2,2),∴AB=,2>,∴以AB为直径作圆与x轴无交点(如图3),∴不存在∠AEB=90°.综上可知:在x轴上存在点E,使以A、B、E为顶点的三角形与△ACD相似,点E的坐标为(﹣2,0).21、(1)10%;(2)见解析.【解题分析】
(1)所有项目所占的总权数为100%,从100%中减去其它几个项目的权数即可,
(2)计算李明、张华的总成绩,即加权平均数后,比较得出答案.【题目详解】解:(1)服装权数是(2)选择李明参加比赛理由如下:李明的总成绩张华的总成绩选择李明参加比赛.【题目点拨】考查加权平均数的意义及计算方法,理解加权平均数的意义,掌握加权平均数的计算方法是解决问题的关键.22、安排15名工人加工甲种零件,5名工人加工乙种零件.【解题分析】
设安排人生产甲种零件,则(20-x)人生产乙种零件,根据“生产甲种零件的时间生产乙种零件的时间”列方程组求解可得.【题目详解】解:设安排x名工人加工甲种零件,则(20-x)人生产乙种零件,根据题意,得:.解这个方程,得经检验:是所列方程的解,且符合实际意义..答:安排15名工人加工甲种零件,5名工人加工乙种零件.【题目点拨】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23、[发现与证明]:证明见解析;[应用与探究]:AC的长为或1.【解题分析】
[发现与证明]由平行四边形的性质得出∠EAC=∠ACB,由翻折的性质得出∠ACB=∠ACB′,证出∠EAC=∠ACB′,得出AE=CE;得出DE=B′E,证出∠CB′D=∠B′DA=(180°-∠B′ED),由∠AEC=∠B′ED,得出∠ACB′=∠CB′D,即可得出B′D∥AC;[应用与探究]:分两种情况:①由正方形的性质得出∠CAB′=90°,得出∠BAC=90°,再由三角函数即可求出AC;②由正方形的性质和已知条件得出AC=BC=1.【题目详解】解:[发现与证明]:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠EAC=∠ACB,∵△ABC≌△AB′C,∴∠ACB=∠ACB′,BC=B′C,∴∠EAC=∠ACB′,∴AE=CE,即△ACE是等腰三角形;∴DE=B′E,∴∠CB′D=∠B′DA=(180°-∠B′ED),∵∠AEC=∠B′ED,∴∠ACB′=∠CB′D,∴B′D∥AC;[应用与探究]:分两种情况:①如图1所示:∵四边形ACDB′是正方形,∴∠CAB′=90°,∴∠BAC=90°,∵∠B=45°,∴AC=BC=;②如图1所示:AC=BC=1;综上所述:AC的长为或1.【题目点拨】本题考查了平行四边形的性质、正方形的性质、翻折变换、等腰三角形的判定以及平行线的判定;熟练掌握平行四边形的性质、翻折变换的性质,并能进行推理计算是解决问题的关键.24、详见解析.【解题分析】
先求出不等式组的解集,然后找出其中的整数相加即可.【题目详解】,解:解不等式①,得x≥-5;解不等式②,得x<2,;把不等式①和②的解集在数轴上表示出来:原不等式组的解集为-5≤x<2,由数轴知其整数解为-5,-4,-3,-2,-1,0,1,和为-5-4-3-2-1+0+1=-14.【题目点拨】本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.不等式组的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.25、(1)CD=;(2)≤t≤;(3)当0<t<时,S=;当≤t≤时,S=2;当<t≤时,S=-t2+t-.【解题分析】
(1)由勾股定理得出AB=,由△ABC的面积得出AC•BC=AB•CD,即可得出CD的长;(2)分两种情形:①当点N在线段CD上时,如图1所示,利用相似三角形的性质求解即可.②当点Q在线段CD上时,如图2所示,利用相似
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030全球手工巧克力行业调研及趋势分析报告
- 2025年全球及中国天麻素制剂行业头部企业市场占有率及排名调研报告
- 2025年全球及中国三氟化铕行业头部企业市场占有率及排名调研报告
- 2025年全球及中国台式化学发光免疫分析仪行业头部企业市场占有率及排名调研报告
- 2025-2030全球棱镜胶带片行业调研及趋势分析报告
- 2025年全球及中国十六硫醇行业头部企业市场占有率及排名调研报告
- 2025-2030全球波纹型空气弹簧行业调研及趋势分析报告
- 2025年全球及中国高分辨率扫描电子显微镜(SEM)行业头部企业市场占有率及排名调研报告
- 2025-2030全球紫外熔融石英平凸(PCX)透镜行业调研及趋势分析报告
- 2025-2030全球建筑垃圾分类设备行业调研及趋势分析报告
- 课题申报参考:流视角下社区生活圈的适老化评价与空间优化研究-以沈阳市为例
- 《openEuler操作系统》考试复习题库(含答案)
- 项目重点难点分析及解决措施
- 挑战杯-申报书范本
- 北师大版五年级上册数学期末测试卷及答案共5套
- 2024-2025学年人教版生物八年级上册期末综合测试卷
- 2025年九省联考新高考 语文试卷(含答案解析)
- 第1课《春》公开课一等奖创新教案设计 统编版语文七年级上册
- 全过程工程咨询投标方案(技术方案)
- 心理健康教育学情分析报告
- 安宫牛黄丸的培训
评论
0/150
提交评论