2024届福建省寿宁县数学八下期末调研模拟试题含解析_第1页
2024届福建省寿宁县数学八下期末调研模拟试题含解析_第2页
2024届福建省寿宁县数学八下期末调研模拟试题含解析_第3页
2024届福建省寿宁县数学八下期末调研模拟试题含解析_第4页
2024届福建省寿宁县数学八下期末调研模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届福建省寿宁县数学八下期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为()A.(﹣5,3) B.(1,﹣3) C.(2,2) D.(5,﹣1)2.如图,正方形在平面直角坐标系中的点和点的坐标为、,点在双曲线上.若正方形沿轴负方向平移个单位长度后,点恰好落在该双曲线上,则的值是()A.1 B.2 C.3 D.43.一个正多边形的每一个外角的度数都是60°,则这个多边形的边数是:()A.8 B.7 C.6 D.54.如图,某班数学兴趣小组利用数学知识测量建筑物DEFC的高度.他们从点A出发沿着坡度为i=1:2.4的斜坡AB步行26米到达点B处,此时测得建筑物顶端C的仰角α=35°,建筑物底端D的俯角β=30°.若AD为水平的地面,则此建筑物的高度CD约为()米.(参考数据:≈1.7,tan35°≈0.7)A.23.1 B.21.9 C.27.5 D.305.若分式的值为零,则x的值是()A.±2 B.2 C.﹣2 D.06.已知反比例函数y(k≠0),当x时y=﹣1.则k的值为()A.﹣1 B.﹣4 C. D.17.已知边长分别为a、b的长方形的周长为10,面积4,则ab2+a2b的值为()A.10 B.20 C.40 D.808.如图,直线y=x+b与直线y=kx+b交于点P(3,5),则关于x的不等式x+b>kx+6的解集是()A.x>3 B.x<3 C.x≥3 D.x≤39.如图,在中,点在边上,AE交于点,若DE=2CE,则()A. B. C. D.10.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是(

)A.9分B.8分C.7分D.6分二、填空题(每小题3分,共24分)11.观察以下等式:第1个等式:第2个等式:=1第3个等式:=1第4个等式:=1…按照以下规律,写出你猜出的第n个等式:______(用含n的等式表示).12.已知下列函数:;;.其中是一次函数的有__________.(填序号)13.如图所示四个二次函数的图象中,分别对应的是①y=ax1;②y=bx1;③y=cx1;④y=dx1.则a、b、c、d的大小关系为_____.14.若是的小数部分,则的值是______.15.如图,平行四边形ABCD中,点E为BC边上一点,AE和BD交于点F,已知△ABF的面积等于6,△BEF的面积等于4,则四边形CDFE的面积等于___________16.化简得.17.已知2-5是一元二次方程x2-4x+c=0的一个根,则方程的另一个根是______18.的倒数是_____.三、解答题(共66分)19.(10分)如图,将▱ABCD的边AB延长至点E,使AB=BE,连接BD,DE,EC,DE交BC于点O.(1)求证:ΔABD≅ΔBEC;(2)若∠BOD=2∠A,求证:四边形BECD是矩形.20.(6分)如图,△ABC中,D、E分别是AB、AC的中点,延长DE至点F,使EF=DE,连接CF.证明:四边形DBCF是平行四边形.21.(6分)如图,正方形AOCB的边长为4,反比例函数的图象过点E(3,4).(1)求反比例函数的解析式;(2)反比例函数的图象与线段BC交于点D,直线过点D,与线段AB相交于点F,求点F的坐标;(3)连接OF,OE,探究∠AOF与∠EOC的数量关系,并证明.(4)若点P是x轴上的动点,点Q是(1)中的反比例函数在第一象限图象上的动点,且使得△PDQ为等腰直角三角形,请求出点P的坐标.22.(8分)2020年初,“新型冠状病毒”肆虐全国,武汉“封城”.大疫无情人有情,四川在做好疫情防控的同时,向湖北特别是武汉人们伸出了援手,医疗队伍千里驰援、社会各界捐款捐物.某运输公司现有甲、乙两种货车,要将234吨生活物资从成都运往武汉,已知2辆甲车和3辆乙车可运送114吨物资;3辆甲车和2辆乙车可运送106吨物资.(1)求每辆甲车和每辆乙车一次分别能装运多少吨生活物资?(2)从成都到武汉,已知甲车每辆燃油费2000元,乙车每辆燃油费2600元.在不超载的情况下公司安排甲、乙两种车共10辆将所有生活物资运到武汉,问公司有几种派车方案?哪种方案所用的燃油费最少?最低燃油费是多少?23.(8分)如图1,矩形的顶点、分别在轴与轴上,且点,点,点为矩形、两边上的一个点.(1)当点与重合时,求直线的函数解析式;(2)如图②,当在边上,将矩形沿着折叠,点对应点恰落在边上,求此时点的坐标.(3)是否存在使为等腰三角形?若存在,直接写出点的坐标;若不存在,请说明理由.24.(8分)点P(-2,4)关于y轴的对称点P'在反比例函数y=(k≠0)的图象上.(1)求此反比例函数关系式;(2)当x在什么范围取值时,y是小于1的正数?25.(10分)甲、乙两名自行车爱好者准备在段长为3500米的笔直公路上进行比赛,比赛开始时乙在起点,甲在乙的前面.他们同时出发,匀速前进,已知甲的速度为12米/秒,设甲、乙两人之间的距离为s(米),比赛时间为t(秒),图中的折线表示从两人出发至其中一人先到达终点的过程中s(米)与t(秒)的函数关系根据图中信息,回答下列问题:(1)乙的速度为多少米/秒;(2)当乙追上甲时,求乙距起点多少米;(3)求线段BC所在直线的函数关系式.26.(10分)如图,在平行四边形ABCD中,BE平分∠ABC,且与AD边交于点E,∠AEB=45°,证明:四边形ABCD是矩形.

参考答案一、选择题(每小题3分,共30分)1、C【解题分析】【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【题目详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>0,A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣<0,不符合题意;B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;C、把点(2,2)代入y=kx﹣1得到:k=>0,符合题意;D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意,故选C.【题目点拨】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.2、B【解题分析】

过点作轴的垂线交轴于点,过点作的垂线交轴于点,过点作的垂线交于,根据全等三角形的判定和性质,可得到点坐标和点坐标,从而求得双曲线函数未知数和平移距离.【题目详解】过点作轴的垂线交轴于点,过点作的垂线交轴于点,过点作的垂线交于.,,,.又,,,点坐标为将点坐标为代入,可得=4.与同理,可得到,,点坐标为,正方形沿轴负方向平移个单位长度后,点坐标为将点坐标为代入,可得=2.故选B.【题目点拨】本题综合考查反比例函数中未知数的求解、全等三角形的性质与判定、图形平移等知识.涉及图形与坐标系结合的问题,要学会通过辅助线进行求解.3、C【解题分析】分析:正多边形的外角计算公式为:,根据公式即可得出答案.详解:根据题意可得:n=360°÷60°=6,故选C.点睛:本题主要考查的是正多边形的外角计算公式,属于基础题型.明确公式是解决这个问题的关键.4、B【解题分析】

过点B作BN⊥AD,BM⊥DC垂足分别为N,M,设BN=x,则AN=2.4x,在Rt△ABN中,根据勾股定理求出x的值,从而得到BN和DM的值,然后分别在Rt△BDM和Rt△BCM中求出BM和CM的值,即可求出答案.【题目详解】如图所示:过点B作BN⊥AD,BM⊥DC垂足分别为N,M,∵i=1:2.4,AB=26m,∴设BN=x,则AN=2.4x,∴AB==2.6x,则2.6x=26,解得:x=10,故BN=DM=10m,则tan30°===,解得:BM=10,则tan35°===0.7,解得:CM≈11.9(m),故DC=MC+DM=11.9+10=21.9(m).故选B.【题目点拨】本题考查了解直角三角形的应用,如果没有直角三角形则作垂线构造直角三角形,然后利用直角三角形的边角关系来解决问题,有时还会用到勾股定理,相似三角形等知识才能解决问题.5、C【解题分析】

分式的值为1,则分母不为1,分子为1.【题目详解】∵|x|﹣2=1,∴x=±2,当x=2时,x﹣2=1,分式无意义.当x=﹣2时,x﹣2≠1,∴当x=﹣2时分式的值是1.故选C.【题目点拨】分式是1的条件中特别需要注意的是分母不能是1,这是经常考查的知识点.6、A【解题分析】

把、,代入解析式可得k.【题目详解】∵当x时y=﹣1,∴k=(﹣1)1,故选A.【题目点拨】本题考查了反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.7、B【解题分析】

直接利用矩形周长和面积公式得出ab,a+b,进而利用提取公因式法分解因式得出答案.【题目详解】解:由边长分别为a、b的长方形的周长为10,面积4,.则2(a+b)=10,ab=4,则a+b=5,故ab2+a2b=ab(b+a)=4×5=20.故选:B.【题目点拨】本题主要考查了提取公因式法以及矩形的性质应用,正确分解因式是解题关键.8、A【解题分析】

利用函数图象,写出直线y=x+b在直线y=kx+1上方所对应的自变量的范围即可.【题目详解】根据图象得当x>3时,x+b>kx+1.故选:A.【题目点拨】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.9、D【解题分析】

根据DE=2CE可得出DE=CD,再由平行四边形的性质得出CD=AB,从而由即可得出答案.【题目详解】解:∵DE=2CE,

∴DE=CD,

又∵,AB=CD,

∴.

故选:D.【题目点拨】本题考查平行四边形的性质及平行线分线段成比例的知识,解答本题的关键是根据DE=2CE得出的比值,难度一般.10、C【解题分析】分析:根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.详解:将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为:C.点睛:本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.二、填空题(每小题3分,共24分)11、++×=1【解题分析】

观察前四个等式可得出第n个等式的前两项为及,对比前四个等式即可写出第n个等式,此题得解.【题目详解】解:观察前四个等式,可得出:第n个等式的前两项为及,∴第n个等式为故答案为:++×=1【题目点拨】本题考查规律型中的数字的变化类,观察给定等式,找出第n的等式是解题的关键.12、【解题分析】

根据一次函数的定义进行判断即可.【题目详解】解:,是一次函数;,自变量的次数为2,故不是一次函数;是一次函数.故答案为.【题目点拨】本题主要考查一次函数的定义,一次函数解析式y=kx+b的结构特征:(1)k是常数,k≠0;(2)自变量x的次数是1;(3)常数项b可以为任意实数.13、a>b>d>c【解题分析】

设x=1,函数值分别等于二次项系数,根据图象,比较各对应点纵坐标的大小.【题目详解】因为直线x=1与四条抛物线的交点从上到下依次为(1,a),(1,b),(1,d),(1,c),

所以,a>b>d>c.【题目点拨】本题考查了二次函数的图象,采用了取特殊点的方法,比较字母系数的大小.14、1【解题分析】

根据题意知,而,将代入,即可求解.【题目详解】解:∵是的小数部分,而我们知道,∴,∴.故答案为1.【题目点拨】本题目是二次根式的变型题,难度不大,正确理解题干并表示出来,是顺利解题的关键.15、1【解题分析】

利用三角形面积公式得到AF:FE=3:2,再根据平行四边形的性质得到AD∥BE,S△ABD=S△CBD,则可判断△AFD∽△EFB,利用相似的性质可计算出S△AFD=9,所以S△ABD=S△CBD=15,然后用△BCD的面积减去△BEF的面积得到四边形CDFE的面积.【题目详解】解:∵△ABF的面积等于6,△BEF的面积等于4,即S△ABF:S△BEF=6:4=3:2,∴AF:FE=3:2,∵四边形ABCD为平行四边形,∴AD∥BE,S△ABD=S△CBD,∴△AFD∽△EFB,∴S△AFD∴S△AFD=94×4=9∴S△ABD=S△CBD=6+9=15,∴四边形CDFE的面积=15-4=1.故答案为1.【题目点拨】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了平行四边形的性质.16、.【解题分析】试题分析:原式=.考点:分式的化简.17、2+【解题分析】【分析】由于已知方程的一根2-5【题目详解】设方程的另一根为x1,由x1+2-5=4,得x1=2+5.故答案为2+5.【题目点拨】根据方程中各系数的已知情况,合理选择根与系数的关系式是解决此类题目的关键.18、【解题分析】分析:根据倒数的意义或二次根式的化简进行计算即可.详解:因为×=1所以的倒数为.故答案为.分析:此题主要考查了求一个数的倒数,关键是明确倒数的意义,乘积为1的两数互为倒数.三、解答题(共66分)19、(1)证明见解析;(2)证明见解析.【解题分析】

(1)根据平行四边形的判定与性质得到四边形BECD为平行四边形,然后由SSS推出两三角形全等即可;(2)欲证明四边形BECD是矩形,只需推知BC=ED即可.【题目详解】(1)∵四边形ABCD是平行四边形,∴AD=BC   ∴BE∕∕CD.又∵AB=BE,∴BE=DC.∴四边形BECD为平行四边形.∴BD=EC.∵在ΔABD 与ΔBEC中,AB=BE∴ΔABD (2)由(1)知,四边形BECD为平行四边形,则OD=OE   ∵四边形ABCD为平行四边形,∴∠A=∠BCD,即∠A=∠OCD.又∵∠BOD=2∠A   ∴∠OCD=∠ODC,∴OC=OD,∴OC+OB=OD+OE,即BC=ED,∴四边形BECD是矩形.【题目点拨】本题考查了平行四边形的性质和判定,矩形的判定,平行线的性质,全等三角形的性质和判定,三角形的外角性质等知识点的综合运用,难度较大.20、证明见解析.【解题分析】分析:根据中位线的性质得出,结合DE=EF,从而得出DF和BC平行且相等,从而得出答案.详解:证明:∵D、E分别是AB、AC的中点,∴DE=BC,DE∥BC,又EF=DE,∴DF=DE+EF=BC,∴四边形DBCF是平行四边形.点睛:本题主要考查的是三角形中位线的性质以及平行四边形的判定定理,属于中等难度题型.了解中位线的性质是解决这个问题的关键.21、(1)y=;(2)点F的坐标为(2,4);(3)∠AOF=∠EOC,理由见解析;(4)P的坐标是(,0)或(-5,0)或(,0)或(5,0)【解题分析】

(1)设反比例函数的解析式为y=,把点E(3,4)代入即可求出k的值,进而得出结论;(2)由正方形AOCB的边长为4,故可知点D的横坐标为4,点F的纵坐标为4,由于点D在反比例函数的图象上,所以点D的纵坐标为3,即D(4,3),由点D在直线上可得出b的值,进而得出该直线的解析式,再把y=4代入直线的解析式即可求出点F的坐标;(3)在CD上取CG=AF=2,连接OG,连接EG并延长交x轴于点H,由全等三角形的判定定理可知△OAF≌△OCG,△EGB≌△HGC(ASA),故可得出EG=HG,设直线EG的解析式为y=mx+n,把E(3,4),G(4,2)代入即可求出直线EG的解析式,故可得出H点的坐标,在Rt△AOF中,AO=4,AE=3,根据勾股定理得OE=5,可知OC=OE,即OG是等腰三角形底边EF上的中线,所以OG是等腰三角形顶角的平分线,由此即可得出结论;(4)分△PDQ的三个角分别是直角,三种情况进行讨论,作DK⊥x轴,作QR⊥x轴,作DL⊥QR,于点L,即可构造全等的直角三角形,设出P的坐标,根据点在图象上,则一定满足函数的解析式即可求解,【题目详解】解:(1)设反比例函数的解析式y=,∵反比例函数的图象过点E(3,4),∴4=,即k=12,∴反比例函数的解析式y=;(2)∵正方形AOCB的边长为4,∴点D的横坐标为4,点F的纵坐标为4,∵点D在反比例函数的图象上,∴点D的纵坐标为3,即D(4,3),∵点D在直线y=﹣x+b上,∴3=﹣×4+b,解得:b=5,∴直线DF为y=﹣x+5,将y=4代入y=﹣x+5,得4=﹣x+5,解得:x=2,∴点F的坐标为(2,4),(3)∠AOF=∠EOC,理由为:证明:在CD上取CG=AF=2,连接OG,连接EG并延长交x轴于点H,,∴△OAF≌△OCG(SAS),∴∠AOF=∠COG,,∴△EGB≌△HGC(ASA),∴EG=HG,设直线EG:y=mx+n,∵E(3,4),G(4,2),∴,解得,∴直线EG:y=﹣2x+10,令y=﹣2x+10=0,得x=5,∴H(5,0),OH=5,在Rt△AOE中,AO=4,AE=3,根据勾股定理得OE=5,∴OH=OE,∴OG是等腰三角形底边EH上的中线,∴OG是等腰三角形顶角的平分线,∴∠EOG=∠GOH,∴∠EOG=∠GOC=∠AOF,即∠AOF=∠EOC;(4)当Q在D的右侧(如图1),且∠PDQ=90°时,作DK⊥x轴,作QL⊥DK,于点L,则△DPK≌△QDK,设P的坐标是(a,0),则KP=DL=4-a,QL=DK=3,则Q的坐标是(4+3,4-3+a)即(7,-1+a),把(7,-1+a)代入y=得:7(-1+a)=12,解得:a=,则P的坐标是(,0);当Q在D的左侧(如图2),且∠PDQ=90°时,作DK⊥x轴,作QR⊥x轴,作DL⊥QR,于点L,则△QDL≌△PDK,则DK=DL=3,设P的坐标是b,则PK=QL=4-b,则QR=4-b+3=7-b,OR=OK-DL=4-3=1,则Q的坐标是(1,7-b),代入y=得:b=-5,则P的坐标是(-5,0);当Q在D的右侧(如图3),且∠DQP=90°时,作DK⊥x轴,作QR⊥x轴,作DL⊥QR,于点L,则△QDL≌△PQK,则DK=DL=3,设Q的横坐标是c,则纵坐标是,则QK=QL=,又∵QL=c-4,∴c-4=,解得:c=-2(舍去)或6,则PK=DL=DR-LR=DR-QK=3-=1,∴OP=OK-PK=6-1=5,则P的坐标是(5,0);当Q在D的左侧(如图3),且∠DQP=90°时,不成立;当∠DPQ=90°时,(如图4),作DK⊥x轴,作QR⊥x轴,则△DPR≌△PQK,∴DR=PK=3,RP=QK,设P的坐标是(d,0),则RK=QK=d-4,则OK=OP+PK=d+3,则Q的坐标是(d+3,d-4),代入y=得:(d+3)(d-4)=12,解得:d=或(舍去),则P的坐标是(,0),综上所述,P的坐标是(,0)或(-5,0)或(,0)或(5,0),【题目点拨】本题是反比例函数综合题,掌握待定系数法求解析式,反比例函数的性质是解题的关键.22、(1)每辆甲车一次能装运18吨生活物资,每辆乙车一次能装运26吨生活物资;(2)公司有3种派车方案,安排3辆甲车,7辆乙车时,所用的燃油费最少,最低燃油费是1元.【解题分析】

(1)设每辆甲车一次能装运x吨生活物资,每辆乙车一次能装运y吨生活物资,根据“2辆甲车和3辆乙车可运送114吨物资;3辆甲车和2辆乙车可运送106吨物资”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设该公司安排m辆甲车,则安排(10−m)辆乙车,根据10辆车的总运载量不少于234吨,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,结合m为正整数即可得出各派车方案,设总燃油费为w元,根据总燃油费=每辆车的燃油费×派车辆数,即可得出w关于m的函数关系式,再利用一次函数的性质,即可解决最值问题.【题目详解】解:(1)设每辆甲车一次能装运x吨生活物资,每辆乙车一次能装运y吨生活物资,依题意得:,解得:,答:每辆甲车一次能装运18吨生活物资,每辆乙车一次能装运26吨生活物资;(2)设该公司安排m辆甲车,则安排(10−m)辆乙车,依题意得:18m+26(10−m)≥234,解得:m≤,又∵m为正整数,∴m可以为1,2,3,∴公司有3种派车方案,方案1:安排1辆甲车,9辆乙车;方案2:安排2辆甲车,8辆乙车;方案3:安排3辆甲车,7辆乙车;设总燃油费为w元,则w=2000m+2600(10−m)=−600m+26000,∵k=−600,∴w随m的增大而减小,∴当m=3时,w取得最小值,最小值=−600×3+26000=1(元),答:公司有3种派车方案,安排3辆甲车,7辆乙车时,所用的燃油费最少,最低燃油费是1.【题目点拨】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.23、(1)y=x+2;(2)(,10);(3)存在,P坐标为(6,6)或(6,2+2)或(6,10-2).【解题分析】

(1)设直线DP解析式为y=kx+b,将D与C坐标代入求出k与b的值,即可确定出解析式;

(2)当点B的对应点B′恰好落在AC边上时,根据勾股定理列方程即可求出此时P坐标;

(3)存在,分别以BD,DP,BP为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P坐标即可.【题目详解】解:(1)∵C(6,10),D(0,2),

设此时直线DP解析式为y=kx+b,

把D(0,2),C(6,10)分别代入,得

解得

则此时直线DP解析式为y=x+2;

(2)设P(m,10),则PB=PB′=m,如图2,

∵OB′=OB=10,OA=6,

∴AB′==8,

∴B′C=10-8=2,

∵PC=6-m,

∴m2=22+(6-m)2,解得m=

则此时点P的坐标是(,10);

(3)存在,理由为:

若△BDP为等腰三角形,分三种情况考虑:如图3,

①当BD=BP1=OB-OD=10-2=8,

在Rt△BCP1中,BP1=8,BC=6,

根据勾股定理得:CP1=,

∴AP1=10-2,即P1(6,10-2);

②当BP2=DP2时,此时P2(6,6);

③当DB=DP3=8时,

在Rt△DEP3中,DE=6,

根据勾股定理得:P3E=,

∴AP3=AE+EP3=2+2,即P3(6,2+2),

综上,满足题意的P坐标为(6,6)或(6,2+2)或(6,10-2).【题目点拨】此题属于一次函数综合题,待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,熟练掌握待定系数法是解题的关键.24、(1)y=;(2)x>1;【解题分析】

(1)先求出点P(-2,4)关于y轴的对称点P′的坐标,把点P′的坐标代入反比例函数y=(k≠0)即可求出k的值,进而得出反比例函数的解析式;(2)根据y是小于1的正数列出关于x的不等式组,求出x的取值范围即可.【题目详解】(1)∵点P(-2,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论