




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省杭州市文澜中学数学八下期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A,B两个样本的下列统计量对应相同的是()A.平均数 B.标准差 C.中位数 D.众数2.计算的结果是()A. B. C. D.3.下列描述一次函数y=﹣2x+5图象性质错误的是()A.y随x的增大而减小B.直线与x轴交点坐标是(0,5)C.点(1,3)在此图象上D.直线经过第一、二、四象限4.下列二次根式中最简二次根式的个数有()①;②(a>0);③;④.A.1个 B.2个 C.3个 D.4个5.下列命题的逆命题,是假命题的是()A.两直线平行,内错角相等 B.全等三角形的对应边相等C.对顶角相等 D.有一个角为度的三角形是直角三角形6.A、B、C分别表示三个村庄,米,米,米,某社区拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P的位置应在()A.AB的中点 B.BC的中点C.AC的中点 D.的平分线与AB的交点7.学习勾股定理时,数学兴趣小组设计并组织了“勾股定理的证明”的比赛,全班同学的比赛得分统计如表:得分(分60708090100人数(人8121073则得分的中位数和众数分别为A.75,70 B.75,80 C.80,70 D.80,808.从下面四个条件中任意选两个,能使四边形ABCD是平行四边形选法有()①;②;③;④A.2种 B.3种 C.4种 D.5种9.下列四个图形中,既是轴对称又是中心对称的图形是(
)A.4个 B.3个 C.2个 D.1个10.下列各等式成立的是()A. B.C. D.11.下列四边形中,是中心对称而不是轴对称图形的是()A.平行四边形 B.矩形 C.菱形 D.正方形12.某校组织数学学科竞赛为参加区级比赛做选手选拔工作,经过多次测试后,有四位同学成为晋级的候选人,具体情况如下表,如果从这四位同学中选出一名晋级(总体水平高且状态稳定)你会推荐()甲乙丙丁平均分92949492方差35352323A.甲 B.乙 C.丙 D.丁二、填空题(每题4分,共24分)13.某书定价25元,如果一次购买20本以上,超过20本的部分打八折,未超过20本的不打折,试写出付款金额(单位:元)与购买数量(单位:本)之间的函数关系_______.14.函数:y=1x+115.如图,正方形的边长为6,点是上的一点,连接并延长交射线于点,将沿直线翻折,点落在点处,的延长线交于点,当时,则的长为________.16.一个矩形的长比宽多1cm,面积是132cm2,则矩形的长为________cm.17.有5张正面分别标有数字-2,0,2,4,6的不透明卡片,它们除数字不同外其余全部相同,先将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为,则使关于的分式方程有正实数解的概率为________.18.A、B、C三瓶不同浓度的酒精,A瓶内有酒精2kg,浓度x%,B瓶有酒精3kg,浓度y%,C瓶有酒精5kg,浓度z%,从A瓶中倒出10%,B瓶中倒出20%,C瓶中倒出24%,混合后测得浓度33.5%,将混合后的溶液倒回瓶中,使它们恢复原来的质量,再从A瓶倒出30%,B瓶倒出30%,C瓶倒出30%,混合后测得浓度为31.5%,测量发现20≤x≤30,20≤y≤30,35≤z≤45,且x、y、z均为整数,则把起初A、B两瓶酒精全部混合后的浓度为______.三、解答题(共78分)19.(8分)如图,将四边形的四边中点依次连接起来,得四边形到是平行四边形吗?请说明理由.20.(8分)如图,菱形纸片的边长为翻折使点两点重合在对角线上一点分别是折痕.设.(1)证明:;(2)当时,六边形周长的值是否会发生改变,请说明理由;(3)当时,六边形的面积可能等于吗?如果能,求此时的值;如果不能,请说明理由.21.(8分)如图,在矩形ABCD中,AB=3cm,BC=6cm.点P从点D出发向点A运动,运动到点A即停止;同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.22.(10分)如图、,在平行四边形中,、的角平分线、分别与线段两侧的延长线(或线段)相交与、,与相交于点.(1)在图中,求证:,.(2)在图中,仍有(1)中的,成立,请解答下面问题:①若,,,求和的长;②是否能给平行四边形的边和角各添加一个条件,使得点恰好落在边上且为等腰三角形?若能,请写出所给条件;若不能,请说明理由.23.(10分)如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为24,求BC的长度.24.(10分)求不等式组2(x-1)≥x-4x+725.(12分)如图,反比例函数的图像与一次函数的图像交于点,点的横坐标是,点是第一象限内反比例函数图像上的动点,且在直线的上方.(1)若点的坐标是,则,;(2)设直线与轴分别交于点,求证:是等腰三角形;(3)设点是反比例函数图像位于之间的动点(与点不重合),连接,比较与的大小,并说明理由.26.如图,一次函数y=2x+4的图象与x,y轴分别相交于点A,B,以AB为边作正方形ABCD(点D落在第四象限).(1)求点A,B,D的坐标;(2)联结OC,设正方形的边CD与x相交于点E,点M在x轴上,如果△ADE与△COM全等,求点M的坐标.
参考答案一、选择题(每题4分,共48分)1、B【解题分析】试题分析:根据样本A,B中数据之间的关系,结合众数,平均数,中位数和标准差的定义即可得到结论:设样本A中的数据为xi,则样本B中的数据为yi=xi+2,则样本数据B中的众数和平均数以及中位数和A中的众数,平均数,中位数相差2,只有标准差没有发生变化.故选B.考点:统计量的选择.2、A【解题分析】
根据二次根式性质求解.【题目详解】根据得=3故答案为:A【题目点拨】考核知识点:算术平方根性质.理解定义是关键.3、B【解题分析】
由于k=-2<0,则y随x的增大而减小可知A正确;把x=0,x=1分别代入直线的解析式可判断B、C的正误;再由b>0,则直线经过第一、二、四象限,故D正确.【题目详解】A、因为k=﹣2<0,则y随x的增大而减小,所以A选项的说法正确;B、因为x=0,y=5,直线与y轴交点坐标是(0,5),所以B选项的说法错误;C、因为当x=1时,y=﹣2+5=3,所以点(1,3)在此图象上,所以C选项的说法正确;D、因为k<0,b>0,直线经过第一、二、四象限,所以D选项的说法正确.故选:B.【题目点拨】本题考查了一次函数的性质,熟知一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b)是解答此题的关键.4、B【解题分析】
判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【题目详解】解:①,不是最简二次根式;②,是最简二次根式;③,是最简二次根式;④,不是最简二次根式;故选:B.【题目点拨】本题考查的是最简二次根式,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.5、C【解题分析】
根据平行线的判定与性质,可判断A;根据全等三角形的判断与性质,可判断B;根据对顶角性质,可判断C;根据直角三角形的判断与性质,可判断D.【题目详解】A“两直线平行,内错角相等”的逆命题是“内错角相等,两直线平行”是真命题,故A不符合题意;B“全等三角形的对应边相等”的逆命题是“三边对应相等的两个三角形全等”是真命题,故B不符合题意;C“对顶角相等”的逆命题是“相等的角是对顶角”是假命题,故C符合题意;D“有一个角为90度的三角形是直角三角形”的逆命题是“直角三角形中有一个角是90度”是真命题,故D不符合题意;故选C【题目点拨】本题考查了命题与定理,熟练掌握相关性质定理是解答本题的关键.6、A【解题分析】
先计算AB2=2890000,BC2=640000,AC2=2250000,可得BC2+AC2=AB2,那么△ABC是直角三角形,而直角三角形斜边上的中线等于斜边的一半,从而可确定P点的位置.【题目详解】解:如图∵AB2=2890000,BC2=640000,AC2=2250000
∴BC2+AC2=AB2,
∴△ABC是直角三角形,
∴活动中心P应在斜边AB的中点.
故选:A.【题目点拨】本题考查了勾股定理的逆定理.解题的关键是证明△ABC是直角三角形.7、A【解题分析】
根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【题目详解】全班共有40人,40人分数,按大小顺序排列最中间的两个数据是第20,21个,故得分的中位数是(分),得70分的人数最多,有12人,故众数为70(分),故选.【题目点拨】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8、C【解题分析】
根据平行四边形的五种判定方法,灵活运用平行四边形的判定定理,可作出判断.【题目详解】解:①和③根据两组对边分别平行的四边形是平行四边形,能推出四边形ABCD为平行四边形;
①和②,③和④根据一组对边平行且相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;
②和④根据两组对边分别相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;
所以能推出四边形ABCD为平行四边形的有四组故选C.【题目点拨】本题考查了平行四边形的判定,熟练掌握判定定理是解题的关键.平行四边形共有五种判定方法,记忆时要注意技巧;这五种方法中,一种与对角线有关,一种与对角有关,其他三种与边有关.9、C【解题分析】
根据轴对称图形与中心对称图形的概念结合各图形的特点求解.【题目详解】①是轴对称图形,也是中心对称图形,符合题意;
②是轴对称图形,不是中心对称图形,不符合题意;
③是轴对称图形,是中心对称图形,符合题意;
④轴对称图形,不是中心对称图形,不符合题意.
综上可得①③符合题意.
故选:C.【题目点拨】考查了中心对称图形与轴对称图形的识别.判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.10、C【解题分析】
根据分式的基本性质逐一进行判断即可得答案.【题目详解】A、,故此选项不成立;B、==a+b,故此选项不成立;C、==a+1,故此选项成立;D、==﹣,故此选项不成立;故选:C.【题目点拨】本题考查了分式的基本性质,分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变;熟练掌握分式的基本性质是解题关键.11、A【解题分析】【分析】根据理解中心对称图形和轴对称图形定义,可以判断.【题目详解】平行四边形是中心对称图形,不是轴对称图形;矩形是中心对称图形,也是轴对称图形;菱形是中心对称图形,也是轴对称图形;正方形是中心对称图形,也是轴对称图形.只有选项A符合条件.故选A【题目点拨】本题考核知识点:中心对称图形和轴对称图形.解题关键点:理解中心对称图形和轴对称图形定义.12、C【解题分析】在这四位同学中,乙、丙的平均分一样,但丙的方差小,成绩比较稳定,由此可知,可推荐丙,故选C.二、填空题(每题4分,共24分)13、【解题分析】
本题采取分段收费,根据20本及以下单价为25元,20本以上,超过20本的部分打八折分别求出付款金额与购书数的函数关系式,再进行整理即可得出答案.【题目详解】解:根据题意得:,整理得:;则付款金额(单位:元)与购书数量(单位:本)之间的函数关系是;故答案为:.【题目点拨】本题考查了分段函数,理解分段收费的意义,明确每一段购书数量及相应的购书单价是解题的关键,要注意的取值范围.14、x【解题分析】
求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使1x+1在实数范围内有意义,必须x15、【解题分析】
根据翻折变换的性质可得AN=AB,∠BAE=∠NAE,再根据两直线平行,内错角相等可得∠BAE=∠F,从而得到∠NAE=∠F,根据等角对等边可得AM=FM,设CM=x,表示出DM、AM,然后利用勾股定理列方程求出x的值,从而得到AM的值,最后根据NM=AM-AN计算即可得解.【题目详解】∵△ABE沿直线AE翻折,点B落在点N处,∴AN=AB=6,∠BAE=∠NAE,∵正方形对边AB∥CD,∴∠BAE=∠F,∴∠NAE=∠F,∴AM=FM,设CM=x,∵AB=2CF=8,∴CF=3∴DM=6−x,AM=FM=3+x,在Rt△ADM中,由勾股定理得,,即解得x=,所以,AM=3+=,所以,NM=AM−AN=−6=【题目点拨】本题考查翻折变换,解题关键在于熟练掌握勾股定理的性质.16、1【解题分析】
设矩形的宽为xcm,根据矩形的面积=长×宽列出方程解答即可.【题目详解】设矩形的宽为xcm,依题意得:x(x+1)=132,整理,得(x+1)(x-11)=0,解得x1=-1(舍去),x2=11,则x+1=1.即矩形的长是1cm.故答案为:1.【题目点拨】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.17、.【解题分析】
解分式方程,得到解,并让解大于零,然后根据概率公式求解.【题目详解】解:解分式方程得:且x≠2令>0且不等于2,则符合题意得卡片上的数字有:-2,0,4;∴方程的解为正实数的概率为:,故答案为.【题目点拨】本题考查了概率公式和分式方程的求解,其关键是确定满足题意卡片上的数字..18、23%【解题分析】
根据第一次A、B、C各取出部分混合后的浓度得到一条关于xyz的等式,再算出混合液倒回后A、B、C中后各自的酒精量,然后根据第二次混合再得到一条关于xyz的等式,联立组成方程组,使用x、y表示z,根据x、y、z的取值范围确定其准确整数值即可求解.【题目详解】解:A瓶倒出10%:2000×10%=200(克),剩余:2000-200=1800(克),
B瓶倒出20%:3000×20%=600(克),剩余:3000-600=2400(克),C瓶倒出24%:5000×24%=1200(克),剩余:5000-1200=3800(克),根据题意得:(200×x%+600×y%+1200×z%)÷(200+600+1200)=33.5%,混合液倒回后A瓶内的酒精量:1800×x%+200×33.5%,混合液倒回后B瓶内的酒精量:2400×y%+600×33.5%,混合液倒回后C瓶内的酒精量:3800×z%+1200×33.5%,再根据题意可得:[(1800×x%+200×33.5%)×30%+(2400×y%+600×33.5%)×30%+(3800×z%+1200×33.5%)×30%]÷(2000×30%+3000×30%+5000×30%)=31.5%,整理组成方程组得:x+3y+6z=3359x+12y+19z=1240解得:z=355-3y7∵20≤x≤30,20≤y≤30,∴2657(约37.85则z=40或代入可得:x=20y=25z=40,或者x=21y=∵x、y、z均为整数,则只有x=20y=25则把起初A、B两瓶酒精混合后的浓度为:2000×20%+3000故答案为:23%.【题目点拨】本题考查从题意提取信息列方程组的能力,也考查三元一次方程组得解法,准确得出x、y和z之间的关系式再代入范围求解,舍去不符合题意的解为解题的关键.三、解答题(共78分)19、四边形到是平行四边形.理由见解析.【解题分析】分析:连接一条对角线把转化成三角形的中位线来进行推理说明.详解:四边形到是平行四边形.理由如下:连接.∵点是四边形的四边中点∴∥,∥∴∴四边形到是平行四边形点睛:本题考查了平行四边形的判断及三角形的中位线定理的应用,三角形的中位线平行于第三边,并且等于第三边的一半.20、(1)见解析;(2)不变,见解析;(3)能,或【解题分析】
(1)由折叠的性质得到BE=EP,BF=PF,得到BE=BF,根据菱形的性质得到AB∥CD∥FG,BC∥EH∥AD,于是得到结论;
(2)由菱形的性质得到BE=BF,AE=FC,推出△ABC是等边三角形,求得∠B=∠D=60°,得到∠B=∠D=60°,于是得到结论;
(3)记AC与BD交于点O,得到∠ABD=30°,解直角三角形得到AO=1,BO=,求得S四边形ABCD=2,当六边形AEFCHG的面积等于时,得到S△BEF+S△DGH=,设GH与BD交于点M,求得GM=x,根据三角形的面积列方程即可得到结论.【题目详解】解:折叠后落在上,平分,四边形为菱形,同理四边形为菱形,四边形为平行四边形,.不变.理由如下:由得四边形为菱形,为等边三角,为定值.记与交于点.当六边形的面积为时,由得记与交于点,同理即化简得解得,∴当或时,六边形的面积为.【题目点拨】此题是四边形的综合题,主要考查了菱形的性质,等边三角形的判定和性质,三角形的面积公式,菱形的面积公式,解本题的关键是用x表示出相关的线段,是一道基础题目.21、(1)t=3,ABQP是矩形;(2)t=,AQCP是菱形;(3)周长为:15cm,面积为:(cm2).【解题分析】
(1)当四边形ABQP是矩形时,BQ=AP,据此求得t的值;
(2)当四边形AQCP是菱形时,AQ=AC,列方程求得运动的时间t;
(3)菱形的四条边相等,则菱形的周长=4AQ,面积=CQ×AB.【题目详解】解:(1)由已知可得,BQ=DP=t,AP=CQ=6-t
在矩形ABCD中,∠B=90°,AD∥BC,
当BQ=AP时,四边形ABQP为矩形,
∴t=6-t,得t=3
故当t=3s时,四边形ABQP为矩形.
(2)AD∥BC,AP=CQ=6-t,∴四边形AQCP为平行四边形
∴当AQ=CQ时,四边形AQCP为菱形
即=6−t时,四边形AQCP为菱形,解得t=,
故当t=s时,四边形AQCP为菱形.
(3)当t=时,AQ=,CQ=,
则周长为:4AQ=4×=15cm
面积为:CQ•AB=×3=.【题目点拨】本题考查菱形、矩形的判定与性质.注意结合方程的思想解题.22、(1)见解析;(2)①,,②,,见解析.【解题分析】
(1)由平行线的性质和角平分线的性质即可证明结论;(2)①由(1)题的思路可求得FG的长,再证明△BCG是等边三角形,从而得,过点作交延长线于点,在Rt△AFH中用勾股定理即可求出AF的长;②若使点恰好落在边上且为等腰三角形,易得F、G两点重合于点E,再结合(1)(2)的结论进行分析即可得到结论.【题目详解】解:(1)∵四边形是平行四边形,∴,.∴,又∵、是与的角平分线,∴,即∠AEB=90°,∴,∵,∴,又∵是的角平分线、∴,∴.同理可得.∴;(2)解:①由已知可得,、仍是与的角平分线且,,,,.如图,过点作交延长线于点.∵,,..∵,,,,,,.②,(类似答案均可).若使点恰好落在边上,则易得F、G两点重合于点E,又由(1)(2)的结论知,,所以平行四边形的边应满足;若使点恰好落在边上且为等腰三角形,则EA=EB,所以∠EAB=∠EBA,又因为、仍是与的角平分线,所以∠CBA=∠BAD=90°,所以∠C=90°.【题目点拨】本题考查了平行四边形的性质、角平分线的概念、平行线的性质、垂直的定义、等腰三角形和等边三角形的判定和性质、勾股定理和30°角的直角三角形的性质,考查的知识点多,综合性强,解题的关键是熟练掌握上述知识,弄清题意,理清思路,注重知识的前后联系.23、BC=1.【解题分析】
根据等腰三角形的性质可得AD⊥BC,再根据在直角三角形中,斜边上的中线等于斜边的一半可得答案【题目详解】解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴∠ADC=90°,∵点E为AC的中点,∴DE=CE=AC=.∵△CDE的周长为24,∴CD=9,∴BC=2CD=1.【题目点拨】此题考查等腰三角形的性质和直角三角形斜边上的中线,解题关键在于等腰三角形的性质得出AD⊥BC24、-1、-1、0、1、1.【解题分析】试题分析:解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).最后求出整数解.试题解析:2(x-1)≥x-4①解不等式①,得x≥-2,解不等式②,得x<3,∴不等式组的解集为-2≤x<3.∴不等式组的整数解为-1、-1、0、1、1.考点:解一元一次不等式组.25、(1),.(2)详见解析;(3),理由详见解析.【解题分析】
(1)由P点坐标可直接求得k的值,过P、B两点,构造矩形,利用面积的和差可求得△PBO的面积,利用对称,则可求得△PAB的面积;(2)可设出P点坐标,表示出直线PA、PB的解析式,则可表示出M、N的坐标,作PG⊥x轴于点G,可求得MG=NG,即G为MN的中点,则可证得结论;(3)连接QA交x轴于点M′,连接QB并延长交x轴于点N′,利用(2)的结论可求得∠MM′A=∠QN′O,结合(2)可得到∠PMN=∠PNM,利用外角的性质及对顶角进一步可求得∠PAQ=∠PBQ.【题目详解】(1)∵点P(1,4)在反比例函数图象上,∴k=4×1=4,∵B点横坐标为4,∴B(4,1),连接OP,过P作x轴的平行线,交y轴于点P′,过B作y轴的平行线,交x轴于点B′,两线交于点D,如图1,则D(4,4),∴PP′=1,P′O=4,OB′=4,BB′=1,∴BD=4-1=3,PD=4-1=3,∴S△POB=S矩形OB′DP′-S△PP′O-S△BB′O-S△BDP=16-2-2-4.5=7.5,∵A、B关于原点对称,∴OA=OB,∴S△PAO=S△PBO,∴S△PAB=2S△PBO=15;(2)∵点P是第一象限内反比例函数图象上的动点,且在直线AB的上方,∴可设点P坐标为(m,),且可知A(-4,-1),设直线PA解析式为y=k′x+b,把A、P坐标代入可得,解得,∴直线PA解析式为,令y=0可求得x=m-4,∴M(m-4,0),同理可求得直线PB解析式为,令y=0可求得x=m+4,∴N(m+4,0),作PG⊥x轴于点G,如图2,则G(m,0),∴MG=m-(m-4)=4,NG=m+4-m=4,∴MG=NG,即G为MN中点,∴PG垂直平分MN,∴PM=PN,即△PMN是等腰三角形;(3)∠PAQ=∠PBQ,理由如下:连接QA交x轴于M′,连接QB并延长交x轴于点N′,如图3,由(2)可得PM′=PN′,即∠QM′O=∠QN′O,∴∠MM′A=∠QN′O,由(2)知∠PMN=∠PNM,∴∠PMN-∠MM′A=∠PNM-∠QN′O,∴∠PAQ=∠NBN′,又∠NBN′=∠PBQ,∴∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 南平2025年福建南平市属医疗单位医疗类储备人才引进36人笔试历年参考题库附带答案详解
- 土地抵押合同范文二零二五年
- 婚姻忠诚协议认定二零二五年
- 工程机械运输合同范例
- 二零二五版出租汽车客运经营合同书
- 二零二五版公司内部股权转让简单协议范例
- 二零二五琴行教师聘用合同范文
- 水费承包合同二零二五年
- 元宵节讲解课件
- 2025上海民间个人借款合同书
- 2025届成都市2022级高中毕业班第二次诊断性检测语文试题及答案
- GB/T 18853-2015液压传动过滤器评定滤芯过滤性能的多次通过方法
- 1.1质点 参考系-【新教材】人教版(2019)高中物理必修第一册课件(共27张PPT)
- 艾滋病梅毒和乙肝母婴阻断知识知晓率调查问卷
- 99S203消防水泵接合器安装图集
- 平面控制点测量复核记录
- 中国胸痛中心认证标准(标准版、基层版)
- 《艺术学概论考研》课件艺术内涵的演变
- 三年级英语家长会发言稿15篇
- 光的折射(课堂PPT)
- 监控系统维护及方案
评论
0/150
提交评论