2024届江苏省无锡市澄西片数学八年级第二学期期末统考试题含解析_第1页
2024届江苏省无锡市澄西片数学八年级第二学期期末统考试题含解析_第2页
2024届江苏省无锡市澄西片数学八年级第二学期期末统考试题含解析_第3页
2024届江苏省无锡市澄西片数学八年级第二学期期末统考试题含解析_第4页
2024届江苏省无锡市澄西片数学八年级第二学期期末统考试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省无锡市澄西片数学八年级第二学期期末统考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.在反比例函数y=的图象的每一条曲线上,y都随x的增大而减小,则m的值可以是()A.0 B.1 C.2 D.32.下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.2,3,4 C.3,4,5 D.1,,3.天籁音乐行出售三种音乐,即古典音乐、流行音乐、民族音乐,为了表示这三种唱片的销售量占总销售量的百分比,应该用()A.条形统计图 B.扇形统计图 C.折线统计图 D.以上都可以4.某水资源保护组织对邢台某小区的居民进行节约水资源的问卷调查.某居民在问卷的选项代号上画“√”,这个过程是收集数据中的()A.确定调查范围 B.汇总调查数据C.实施调查 D.明确调查问题5.下列四组线段中,不能构成直角三角形的是()A.4,5,6 B.6,8,10 C.7,24,25 D.5,3,46.使代数式有意义的x的取值范围是()A.x>2 B.x>﹣2 C.x≥2 D.x≥﹣27.下列各组多项式中,没有公因式的是()A.ax﹣bx和by﹣ay B.3x﹣9xy和6y2﹣2yC.x2﹣y2和x﹣y D.a+b和a2﹣2ab+b28.要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是()A.调查九年级全体学生 B.调查七、八、九年级各30名学生C.调查全体女生 D.调查全体男生9.在平面直角坐标系中,点(–1,–2)在第()象限.A.一B.二C.三D.四10.如图,▱ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②S▱ABCD=AB•AC;③OB=AB;④OE=BC,成立的个数有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分)11.已知一个凸多边形的内角和是它的外角和的3倍,那么这个凸多边形的边数等于_________.12.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依此为2,4,6,8,...,顶点依此用A1,A2,A3,A4......表示,则顶点A55的坐标是___.13.的平方根为_______14.在平面直角坐标系中,若直线y=kx+b经过第一、三、四象限,则直线y=bx+k不经过的象限是________.15.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AB=10,将△ABC沿CB方向向右平移得到△DEF.若四边形ABED的面积为20,则平移距离为___________.16.如图,在数轴上点A表示的实数是_____________.17.如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为_________.18.若∠BAC=30°,AP平分∠BAC,PD∥AC,且PD=6,PE⊥AC,则PE=________.三、解答题(共66分)19.(10分)问题探究(1)请在图①中作出两条直线,使它们将圆面四等分;(2)如图②,是正方形内一定点,请在图②中作出两条直线(要求其中一条直线必须过点),使它们将正方形的面积四等分:问题解决(3)如图③,在四边形中,,点是的中点如果,且,那么在边上足否存在一点,使所在直线将四边形的面积分成相等的两部分?若存在,求出的长:若不存在,说明理由.20.(6分)已知的三边长分别为,求证:是直角三角形.21.(6分)计算:(1).(2).(3).(4)解方程:.22.(8分)在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE.(感知)如图①,过点A作AF⊥BE交BC于点F.易证△ABF≌△BCE.(不需要证明)(探究)如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.(1)求证:BE=FG.(2)连结CM,若CM=1,则FG的长为.(应用)如图③,取BE的中点M,连结CM.过点C作CG⊥BE交AD于点G,连结EG、MG.若CM=3,则四边形GMCE的面积为.23.(8分)在开展“好书伴我成长”读书活动中,某中学为了解八年级名学生的读书情况,随机调查了八年级名学生读书的册数,统计数据如下表所示.册数人数(1)求这个数据的平均数、众数和中位数.(2)根据这组数据,估计该校八年级名学生在本次活动中读书多于册的人数.24.(8分)小明和小兵两人参加体育项目训练,近期的5次测试成绩如下表所示:1次2次3次4次5次小明1014131213小兵1111151411根据以上信息,解决以下问题:(1)小明成绩的中位数是__________.(2)小兵成绩的平均数是__________.(3)为了比较他俩谁的成绩更稳定,老师利用方差公式计算出小明的方差如下(其中表示小明的平均成绩);请你帮老师求出小兵的方差,并比较谁的成绩更稳定。25.(10分)如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=5,AC=12,求EF的长.26.(10分)如图,已知双曲线,经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC.(1)求k的值;(2)若△BCD的面积为12,求直线CD的解析式;(3)判断AB与CD的位置关系,并说明理由.

参考答案一、选择题(每小题3分,共30分)1、A【解题分析】

根据反比例函数的性质,可得出,从而得出的取值范围.【题目详解】解:反比例函数的图象的每一条曲线上,都随的增大而减小,,解得,则m可以是0.故选A.【题目点拨】本题考查了反比例函数的性质,当时,都随的增大而减小;当时,都随的增大而增大.2、C【解题分析】

由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【题目详解】A.4+5≠6,不能构成直角三角形,故不符合题意;B.2+3≠4,不能构成直角三角形,故不符合题意;C.3+4=5,能构成直角三角形,故符合题意;D.1+()≠(),不能构成直角三角形,故不符合题意。故选C.【题目点拨】此题考查勾股定理的逆定理,解题关键在于利用勾股定理进行计算3、B【解题分析】

扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.根据以上即可得出.【题目详解】根据题意,知,要求表示这三种唱片的销售量占总销售的百分比,结合统计图各自的特点,应选用扇形统计图.故选B.【题目点拨】本题考查了统计图的选择,熟练掌握扇形统计图、折线统计图及条形统计图的特征是解题的关键.4、C【解题分析】

根据收集数据的几个阶段可以判断某居民在问卷上的选项代号画“√”,属于哪个阶段,本题得以解决.【题目详解】解:某居民在问卷上的选项代号画“√”,这是数据中的实施调查阶段,故选:C.【题目点拨】本题考查调查收集数据的过程与方法,解题的关键是明确收集数据的几个阶段.5、A【解题分析】

由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方,即可解答.【题目详解】解:A、42+52≠62,故不是直角三角形,符合题意;B、62+82=102,能构成直角三角形,不符合题意;C、72+242=252,能构成直角三角形,不符合题意;D、32+42=52,能构成直角三角形,不符合题意.故选:A.【题目点拨】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.6、D【解题分析】

根据被开方数大于等于0列式计算即可得解.【题目详解】由题意得,x+2≥0,解得x≥﹣2,故选D.【题目点拨】本题考查了二次根式有意义的条件,熟知二次根式有意义的条件是被开方数为非负数是解题的关键.7、D【解题分析】

直接利用公因式的确定方法:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂,进而得出答案.【题目详解】A、ax﹣bx=x(a﹣b)和by﹣ay=﹣y(a﹣b),故两多项式的公因式为:a﹣b,故此选项不合题意;B、3x﹣9xy=3x(1﹣3y)和6y2﹣2y=﹣2y(1﹣3y),故两多项式的公因式为:1﹣3y,故此选项不合题意;C、x2﹣y2=(x﹣y)(x+y)和x﹣y,故两多项式的公因式为:x﹣y,故此选项不合题意;D、a+b和a2﹣2ab+b2=(a﹣b)2,故两多项式没有公因式,故此选项符合题意;故选:D.【题目点拨】此题主要考查了公因式,正确把握确定公因式的方法是解题关键.8、B【解题分析】【分析】如果抽取的样本得当,就能很好地反映总体的情况,否则抽样调查的结果会偏离总体情况.要抽出具有代表性的调查样本.【题目详解】A.只调查九年级全体学生,没有代表性;B.调查七、八、九年级各30名学生,属于分层抽样,有代表性;C.只调查全体女生,没有代表性;D.只调查全体男生,没有代表性.故选B.【题目点拨】本题考核知识点:抽样调查.解题关键点:要了解全校学生的课外作业负担情况,抽取的样本一定要具有代表性.9、C【解题分析】分析:根据在平面直角坐标系中点的符号特征求解即可.详解:∵-1<0,-2<0,∴点(–1,–2)在第三象限.故选C.点睛:本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.10、C【解题分析】试题分析:由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据AE平分∠BAD,得到∠BAE=∠EAD=60°推出△ABE是等边三角形,由于AB=BC,得到AE=BC,得到△ABC是直角三角形,于是得到∠CAD=30°,故①正确;由于AC⊥AB,得到S▱ABCD=AB•AC,故②正确,根据AB=BC,OB=BD,且BD>BC,得到AB<OB,故③错误;根据三角形的中位线定理得到OE=AB,于是得到OE=BC,故④正确.解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等边三角形,∴AE=AB=BE,∵AB=BC,∴AE=BC,∴∠BAC=90°,∴∠CAD=30°,故①正确;∵AC⊥AB,∴S▱ABCD=AB•AC,故②正确,∵AB=BC,OB=BD,且BD>BC,∴AB<OB,故③错误;∵CE=BE,CO=OA,∴OE=AB,∴OE=BC,故④正确.故选:C.二、填空题(每小题3分,共24分)11、1【解题分析】

根据多边形的内角和定理,多边形的内角和等于(n-2)•110°,外角和等于360°,然后列方程求解即可.【题目详解】解:设这个凸多边形的边数是n,根据题意得

(n-2)•110°=3×360°,

解得n=1.

故这个凸多边形的边数是1.

故答案为:1.【题目点拨】本题主要考查了多边形的内角和公式与外角和定理,根据题意列出方程是解题的关键.12、(14,14)【解题分析】

观察图象,每四个点一圈进行循环,每一圈第一个点在第三象限,根据点的脚标与坐标寻找规律【题目详解】∵55=413+3,A与A在同一象限,即都在第一象限,根据题中图形中的规律可得3=40+3,A的坐标为(0+1,0+1),即A(1,1),7=41+3,A的坐标为(1+1,1+1),A(2,2),11=42+3,A的坐标为(2+1,2+1),A(3,3);…55=413+3,A(14,14),A的坐标为(13+1,13+1)故答案为(14,14)【题目点拨】此题考查点的坐标,解题关键在于发现坐标的规律13、【解题分析】

利用平方根立方根定义计算即可.【题目详解】∵,∴的平方根是±,故答案为±.【题目点拨】本题考查了方根的定义,熟练掌握平方根的定义是解本题的关键.注意:区别平方根和算术平方根.一个非负数的平方根有两个,互为相反数,正值为算术平方根.14、第三象限【解题分析】分析:根据直线y=kx+b在平面直角坐标系中所经过象限与k、b值的关系进行分析解答即可.详解:∵直线y=kx+b经过第一、三、四象限,∴k>0,b<0,∴直线y=bx+k经过第一、二、四象限,∴直线y=bx+k不经过第三象限.故答案为:第三象限.点睛:熟知:“直线y=kx+b在平面直角坐标系中所经过的象限与k、b的值的关系”是解答本题的关键.15、1【解题分析】

先根据含30度的直角三角形三边的关系得到AC,再根据平移的性质得AD=BE,ADBE,于是可判断四边形ABED为平行四边形,则根据平行四边形的面积公式得到BE的方程,则可计算出BE=1,即得平移距离.【题目详解】解:在Rt△ABC中,∵∠ABC=30°,∴AC=AB=5,∵△ABC沿CB向右平移得到△DEF,∴AD=BE,ADBE,∴四边形ABED为平行四边形,∵四边形ABED的面积等于20,∴AC•BE=20,即5BE=20,∴BE=1,即平移距离等于1.故答案为:1.【题目点拨】本题考查了含30°角的直角三角形的性质,平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.也考查了平行四边形的判定与性质.16、【解题分析】

如图在直角三角形中的斜边长为,因为斜边长即为半径长,且OA为半径,所以OA=,即A表示的实数是.【题目详解】由题意得,OA=,∵点A在原点的左边,∴点A表示的实数是-.故答案为-.【题目点拨】本题考查了勾股定理,实数与数轴的关系,根据勾股定理求出线段OA的长是解答本题的关键.17、1.【解题分析】

设P(0,b),∵直线APB∥x轴,∴A,B两点的纵坐标都为b,而点A在反比例函数y=的图象上,∴当y=b,x=-,即A点坐标为(-,b),又∵点B在反比例函数y=的图象上,∴当y=b,x=,即B点坐标为(,b),∴AB=-(-)=,∴S△ABC=•AB•OP=••b=1.18、1【解题分析】分析:过P作PF⊥AB于F,根据平行线的性质可得∠FDP=∠BAC=10°,再根据10度所对的边是斜边的一半可求得PF的长,最后根据角平分线的性质即可求得PE的长.详解:过P作PF⊥AB于F.∵PD∥AC,∴∠FDP=∠BAC=10°,∴在Rt△PDF中,PF=PD=1.∵AP平分∠BAC,PE⊥AC于E,PF⊥AB于F,∴PE=PF=1.故答案为1.点睛:本题考查了角平分线的性质,直角三角形10°角所对的直角边等于斜边的一半的性质,平行线的性质,熟记性质是解题的关键.三、解答题(共66分)19、(1)答案见解析;(2)答案见解析;(3)存在,BQ=b【解题分析】

(1)画出互相垂直的两直径即可;(2)连接AC、BD交于O,作直线OM,分别交AD于P,交BC于Q,过O作EF⊥OM交DC于F,交AB于E,则直线EF、OM将正方形的面积四等分,根据三角形的面积公式和正方形的性质求出即可;(3)当BQ=CD=b时,PQ将四边形ABCD的面积二等份,连接BP并延长交CD的延长线于点E,证△ABP≌△DEP求出BP=EP,连接CP,求出S△BPC=S△EPC,作PF⊥CD,PG⊥BC,由BC=AB+CD=DE+CD=CE,求出S△BPC-S△CQP+S△ABP=S△CPE-S△DEP+S△CQP,即可得出S四边形ABQP=S四边形CDPQ即可.【题目详解】解:(1)如图1所示,(2)连接AC、BD交于O,作直线OM,分别交AD于P,交BC于Q,过O作EF⊥OM交DC于F,交AB于E,则直线EF、OM将正方形的面积四等分,理由是:∵点O是正方形ABCD的对称中心,∴AP=CQ,EB=DF,在△AOP和△EOB中∵∠AOP=90°-∠AOE,∠BOE=90°-∠AOE,∴∠AOP=∠BOE,∵OA=OB,∠OAP=∠EBO=45°,∴△AOP≌△EOB,∴AP=BE=DF=CQ,设O到正方形ABCD一边的距离是d,则(AP+AE)d=(BE+BQ)d=(CQ+CF)d=(PD+DF)d,∴S四边形AEOP=S四边形BEOQ=S四边形CQOF=S四边形DPOF,直线EF、OM将正方形ABCD面积四等份;(3)存在,当BQ=CD=b时,PQ将四边形ABCD的面积二等份,理由是:如图③,连接BP并延长交CD的延长线于点E,∵AB∥CD,∴∠A=∠EDP,∵在△ABP和△DEP中∴△ABP≌△DEP(ASA),∴BP=EP,连接CP,∵△BPC的边BP和△EPC的边EP上的高相等,又∵BP=EP,∴S△BPC=S△EPC,作PF⊥CD,PG⊥BC,则BC=AB+CD=DE+CD=CE,由三角形面积公式得:PF=PG,在CB上截取CQ=DE=AB=a,则S△CQP=S△DEP=S△ABP∴S△BPC-S△CQP+S△ABP=S△CPE-S△DEP+S△CQP即:S四边形ABQP=S四边形CDPQ,∵BC=AB+CD=a+b,∴BQ=b,∴当BQ=b时,直线PQ将四边形ABCD的面积分成相等的两部分.【题目点拨】本题考查了正方形性质,菱形性质,三角形的面积等知识点的应用,主要考查学生综合运用性质进行推理的能力,注意:等底等高的三角形的面积相等.20、见解析.【解题分析】

根据勾股定理的逆定理解答即可.【题目详解】证明:,以为三边的是直角三角形.【题目点拨】本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a,b,c表示三角形的三条边,如果a2+b2=c2,那么这个三角形是直角三角形.21、(1)-1;(2)+1;(3);(4)x=-15【解题分析】

(1)根据二次根式的运算法则合并计算即可;(2)根据二次根式的运算法则合并计算即可;(3)先把分母因式分解,再通分,按照同分母分式的加减法法则计算即可;(4)分式两边同时乘以(x+3)(x-3),再去括号、移项、整理并检验即可得答案.【题目详解】(1);=-3+-1=-1(2)=-1+-2=+1(3)===(4)解方程去分母得:(x+3)2=4(x-3)+(x+3)(x-3)去括号得:x2+6x+9=4x-12+x2-9移项得:2x=-30解得x=-15检验:x=-15是原方程的根【题目点拨】本题考查二次根式的计算、分式的减法及解分式方程,熟练掌握运算法则是解题关键.22、(1)证明见解析;(1)1,2.【解题分析】【分析】感知:利用同角的余角相等判断出∠BAF=∠CBE,即可得出结论;探究:(1)判断出PG=BC,同感知的方法判断出△PGF≌CBE,即可得出结论;(1)利用直角三角形的斜边的中线是斜边的一半,应用:借助感知得出结论和直角三角形斜边的中线是斜边的一半即可得出结论.【题目详解】感知:∵四边形ABCD是正方形,∴AB=BC,∠BCE=∠ABC=20°,∴∠ABE+∠CBE=20°,∵AF⊥BE,∴∠ABE+∠BAF=20°,∴∠BAF=∠CBE,在△ABF和△BCE中,,∴△ABF≌△BCE(ASA);探究:(1)如图②,过点G作GP⊥BC于P,∵四边形ABCD是正方形,∴AB=BC,∠A=∠ABC=20°,∴四边形ABPG是矩形,∴PG=AB,∴PG=BC,同感知的方法得,∠PGF=∠CBE,在△PGF和△CBE中,,∴△PGF≌△CBE(ASA),∴BE=FG;(1)由(1)知,FG=BE,连接CM,∵∠BCE=20°,点M是BE的中点,∴BE=1CM=1,∴FG=1,故答案为:1.应用:同探究(1)得,BE=1ME=1CM=6,∴ME=3,同探究(1)得,CG=BE=6,∵BE⊥CG,∴S四边形CEGM=CG×ME=×6×3=2,故答案为:2.【题目点拨】本题是四边形综合题,主要考查了正方形的性质,同角的余角相等,全等三角形的判定和性质,直角三角形的性质,熟练掌握相关的性质与定理、判断出CG=BE是解本题的关键.23、(1)平均数为2;众数为3;中位数为2;(2)216人.【解题分析】

(1)根据平均数、众数、中位数的概念求解;(2)根据样本数据,估计本次活动中读书多于2册的人数.【题目详解】解:(1)由题意得,平均数为:,读书册数为3的人数最多,即众数为3,第25人和第26人读数厕所的平均值为中位数,及中位数为:,(2)(人.答:估计七年级读书多于2册的有216人.【题目点拨】本题考查了众数、中位数、平均数的知识,掌握各知识点的概念是解答本题的关键.24、(1)13;(2)12.4;(3)3.04,小明的成绩更稳定。【解题分析】

(1)按大小顺序排列这组数据,中间一个数或两个数的平均数即为这组数据的中位数;(2)利用平均数的计算公式直接计算即可得出答案;(3)利用方差的计算公式求出小兵的方差,然后根据方差的大小可得出结论。【题目详解】(1)按大小顺序排列小明的成绩,中间数为13,所以小明成绩的中位数是13.故答案为:13(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论