广东省深圳龙华区七校联考2024届数学八年级第二学期期末教学质量检测试题含解析_第1页
广东省深圳龙华区七校联考2024届数学八年级第二学期期末教学质量检测试题含解析_第2页
广东省深圳龙华区七校联考2024届数学八年级第二学期期末教学质量检测试题含解析_第3页
广东省深圳龙华区七校联考2024届数学八年级第二学期期末教学质量检测试题含解析_第4页
广东省深圳龙华区七校联考2024届数学八年级第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省深圳龙华区七校联考2024届数学八年级第二学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.若一个多边形的内角和是900°,则这个多边形的边数是()A.5B.6C.7D.82.顺次连接对角线相等的四边形的各边中点,所形成的四边形是A.平行四边形 B.菱形 C.矩形 D.正方形3.打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间满足某种函数关系,其函数图象大致为()A. B.C. D.4.关于的分式方程的解为正实数,则实数的取值范围是A.且 B.且 C.且 D.且5.如图,▱OABC的顶点O、A、C的坐标分别是(0,0),(2,0),(0.5,1),则点B的坐标是()A.(1,2) B.(0.5,2) C.(2.5,1) D.(2,0.5)6.下列各组数中,不能构成直角三角形的是()A. B. C. D.7.根据以下程序,当输入x=﹣2时,输出结果为()A.﹣5 B.﹣2 C.0 D.38.下列二次根式中,属于最简二次根式的是(

)A. B. C. D.9.下列方程中是关于x的一元二次方程的是()A.x=x2﹣3 B.ax2+bx+c=0C.1x+1=1 D.3x2﹣2xy﹣5y210.某特快列车在最近一次的铁路大提速后,时速提高了30千米小时,则该列车行驶350千米所用的时间比原来少用1小时,若该列车提速前的速度是x千米小时,下列所列方程正确的是A. B.C. D.11.如图,在△ABC中,∠A=∠B=45,AB=4.以AC为边的阴影部分图形是一个正方形,则这个正方形的面积为()A.2 B.4 C.8 D.1612.在,,,高,则BC的长是()A.14 B.4 C.4或14 D.7或13二、填空题(每题4分,共24分)13.如图,在ABCD中,线段BE、CE分别平分∠ABC和∠BCD,若AB=5,BE=8,则CE的长度为________.14.已知点A(a,b)是一次函数的图像与反比例函数的图像的一个交点,则=___.15.如图,在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为cm(结果不取近似值).16.已知关于x的不等式组x-a≥04-17.如图,线段AB的长为4,P为线段AB上的一个动点,△PAD和△PBC都是等腰直角三角形,且∠ADP=∠PCB=90°,则CD长的最小值是____.18.直线y=kx+3经过点(2,-3),则该直线的函数关系式是____________三、解答题(共78分)19.(8分)(1)解分式方程:(2)解不等式组,并在数轴上表示其解集.20.(8分)平衡车越来越受到中学生的喜爱,某公司今年从厂家以3000元/辆的批发价购进某品牌平衡车300辆进行销售,零售价格为4200元/辆,暑期将至,公司决定拿出一部分该品牌平衡车以4000元/辆的价格进行促销.设全部售出获得的总利润为y元,今年暑假期间拿出促销的该品牌平衡车数量为x辆,根据上述信息,解答下列问题:(1)求y与x之间的函数解析式(也称关系式),并直接写出x的取值范围;(2)若以促销价进行销售的数量不低于零售价销售数量的,该公司应拿出多少辆该品牌平衡车促销才能使这批车的销售利润最大?并求出最大利润.21.(8分)在平行四边形中,和的平分线交于的延长线交于,是猜想:(1)与的位置关系?(2)在的什么位置上?并证明你的猜想.(3)若,则点到距离是多少?22.(10分)如图,是平行四边形的对角线,分别为边和边延长线上的点,连接交于点,且.(1)求证:;(2)若是等腰直角三角形,,是的中点,,连接,求的长.23.(10分)如图1,已知△ABC是等边三角形,点D,E分别在边BC,AC上,且CD=AE,AD与BE相交于点F.(1)求证:∠ABE=∠CAD;(2)如图2,以AD为边向左作等边△ADG,连接BG.ⅰ)试判断四边形AGBE的形状,并说明理由;ⅱ)若设BD=1,DC=k(0<k<1),求四边形AGBE与△ABC的周长比(用含k的代数式表示).24.(10分)如图,在4×3的正方形网格中,每个小正方形的边长都为1.(1)线段AB的长为;(2)在图中作出线段EF,使得EF的长为,判断AB,CD,EF三条线段能否构成直角三角形,并说明理由.25.(12分)自中央出台“厉行节约、反对浪费”八项规定后,某品牌高档酒销量锐减,进入四月份后,经销商为扩大销量,每瓶酒比三月份降价500元,如果卖出相同数量的高档酒,三月份销售额为4.5万元,四月份销售额只有3万元.(1)求三月份每瓶高档酒售价为多少元?(2)为了提高利润,该经销商计划五月份购进部分大众化的中低档酒销售.已知高档酒每瓶进价为800元,中低档酒每瓶进价为400元.现用不超过5.5万元的预算资金购进,两种酒共100瓶,且高档酒至少购进35瓶,请计算说明有几种进货方案?(3)该商场计划五月对高档酒进行促销活动,决定在四月售价基础上每售出一瓶高档酒再送顾客价值元的代金券,而中低档酒销售价为550元/瓶.要使(2)中所有方案获利恰好相同,请确定的值,并说明此时哪种方案对经销商更有利?26.如图所示,点P的坐标为(1,3),把点P绕坐标原点O逆时针旋转90°后得到点Q.(1)写出点Q的坐标是________;(2)若把点Q向右平移个单位长度,向下平移个单位长度后,得到的点落在第四象限,求的取值范围;(3)在(2)条件下,当取何值,代数式取得最小值.

参考答案一、选择题(每题4分,共48分)1、C【解题分析】

根据多边形的内角和公式(n﹣2)•180°,列式求解即可.【题目详解】设这个多边形是n边形,根据题意得,(n﹣2)•180°=900°,解得n=1.故选:C.【题目点拨】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.2、B【解题分析】

菱形,理由为:利用三角形中位线定理得到EF与HG平行且相等,得到四边形EFGH为平行四边形,再由EH=EF,利用邻边相等的平行四边形是菱形即可得证.【题目详解】解:菱形,理由为:如图所示,∵E,F分别为AB,BC的中点,∴EF为△ABC的中位线,∴EF∥AC,EF=AC,同理HG∥AC,HG=AC,∴EF∥HG,且EF=HG,∴四边形EFGH为平行四边形,∵EH=BD,AC=BD,∴EF=EH,则四边形EFGH为菱形,故选B.【题目点拨】此题考查了中点四边形,平行四边形的判定,菱形的判定,熟练掌握三角形中位线定理是解本题的关键.3、D【解题分析】

解:因为进水时水量增加,函数图象的走势向上,所以可以排除B,清洗时水量大致不变,函数图象与x轴平行,排水时水量减少,函数图象的走势向下,排除A,对于C、D,因为题目中明确说明了一开始时洗衣机内无水.故选D.4、D【解题分析】

先根据分式方程的解法,求出用m表示x的解,然后根据分式有解,且解为正实数构成不等式组求解即可.【题目详解】去分母,得x+m+2m=3(x-2)解得x=∵关于x的分式方程的解为正实数∴x-2≠0,x>0即≠2,>0,解得m≠2且m<6故选D.点睛:此题主要考查了分式方程的解和分式方程有解的条件,用含m的式子表示x解分式方程,构造不等式组是解题关键.5、C【解题分析】

延长BC交y轴于点D,由点A的坐标得出OA=2,由平行四边形的性质得出BC=OA=2,由点C的坐标得出OD=1,CD=0.5,求出BD=BC+CD=2.5,即可得出点B的坐标.【题目详解】延长BC交y轴于点D,如图所示:∵点A的坐标为(2,0),∴OA=2,∵四边形OABC是平行四边形,∴BC=OA=2,∵点C的坐标是(0.5,1),∴OD=1,CD=0.5,∴BD=BC+CD=2.5,∴点B的坐标是(2.5,1);故选:C.【题目点拨】此题考查坐标与图形性质,平行四边形的性质,解题关键在于作辅助线.6、C【解题分析】

根据勾股定理的逆定理逐项计算即可.【题目详解】A.∵32+42=52,∴能构成直角三角形;B.∵12+22=,∴能构成直角三角形;C.∵,∴不能构成直角三角形;D.∵12+=22,∴能构成直角三角形;故选C.【题目点拨】本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a,b,c表示三角形的三条边,如果a2+b2=c2,那么这个三角形是直角三角形.7、B【解题分析】

根据所给的程序,用所给数的平方减去3,再把所得的结果和1比较大小,判断出需不需要继续计算即可.【题目详解】解:当x=﹣1时,(﹣1)1﹣3=1;当x=1时,11﹣3=﹣1;∵﹣1<1,∴当输入x=﹣1时,输出结果为﹣1.故选:B.【题目点拨】本题考查了程序式的基本算法及代数式的的计算,读懂题中的算法是解题的关键.8、C【解题分析】

满足下列两个条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.【题目详解】A、=,故A不是;B、=,故B不是;C、,是;D、=,故D不是.故选C【题目点拨】考查了最简二次根式的概念,熟练掌握最简二次根式所需要满足的条件是解题的关键.9、A【解题分析】

根据一元二次方程的定义即可解答.【题目详解】选项A,由x=x2﹣3得到:x2﹣x﹣3=0,符合一元二次方程的定义,故本选项正确;选项B,当a=0时,该方程不是一元二次方程,故本选项错误;选项C,该方程不是整式方程,故本选项错误;选项D,该方程属于二元二次方程,故本选项错误;故选A.【题目点拨】本题考查了一元二次方程的定义,一元二次方程必须满足三个条件:(1)只含有一个未知数,未知数的最高次数是2;(2)二次项系数不为0;(3)方程为整式方程.10、B【解题分析】

根据题意可得等量关系为原来走350千米所用的时间提速后走350千米所用的时间,根据等量关系列式即可判断.【题目详解】解:原来走350千米所用的时间为,现在走350千米所用的时间为:,所以可列方程为:.故选:B.【题目点拨】本题考查分式方程的实际应用,根据题意找到提速前和提速后所用时间的等量关系是解决本题的关键.11、C【解题分析】试题解析:12、C【解题分析】

分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD−BD.【题目详解】解:(1)如图锐角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2−AD2=152−122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得CD2=AC2−AD2=132−122=25,∴CD=5,∴BC的长为BD+DC=9+5=11;(2)如图钝角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2−AD2=152−122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得:CD2=AC2−AD2=132−122=25,∴CD=5,∴BC的长为DC−BD=9−5=1.故BC长为11或1.故选:C.【题目点拨】本题考查了勾股定理,把三角形斜边转化到直角三角形中用勾股定理解答.掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.二、填空题(每题4分,共24分)13、6【解题分析】

根据角平分线的定义和平行线的性质得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE.根据直角三角形的勾股定理得到CE即可.【题目详解】解:∵BE和CE分别平分∠ABC和∠BCD,∴∠ABE=∠EBC,∠DCE=∠ECB,∵▱ABCD,∴AB∥CD,AB=CD=5,∴∠ABC+∠DCB=180°,∠AEB=∠EBC,∠DEC=∠ECB,∴(∠ABC+∠DCB)=90°,∠ABE=∠AEB,∠DEC=∠DCE,∴∠EBC+∠ECB=90°,AB=AE=5,CD=DE=AB=5,∴△EBC是直角三角形,AD=BC=AE+ED=10根据勾股定理:CE=.故答案为6【题目点拨】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.14、3【解题分析】

将点A(a,b)带入y=-x+3的图象与反比例函数中,即可求出a+b=3,ab=1,再根据=进行计算.【题目详解】∵点A(a,b)是一次函数的图像与反比例函数的图像的一个交点,∴a+b=3,ab=1,∴==3.故答案是:3.【题目点拨】考查了一次函数和反比例函数上点的坐标特点,解题关键是利用图象上点的坐标满足函数的解析式.15、【解题分析】

由于点B与点D关于AC对称,所以如果连接DQ,交AC于点P,那么△PBQ的周长最小,此时△PBQ的周长=BP+PQ+BQ=DQ+BQ.在Rt△CDQ中,由勾股定理先计算出DQ的长度,再得出结果.【题目详解】连接DQ,交AC于点P,连接PB、BD,BD交AC于O.

∵四边形ABCD是正方形,

∴AC⊥BD,BO=OD,CD=2cm,

∴点B与点D关于AC对称,

∴BP=DP,

∴BP+PQ=DP+PQ=DQ.

在Rt△CDQ中,DQ=cm,

∴△PBQ的周长的最小值为:BP+PQ+BQ=DQ+BQ=+1(cm).

故答案为(+1).【题目点拨】本题考查了正方形的性质;轴对称-最短路线问题,解题的关键是根据两点之间线段最短,确定点P的位置.16、-3<a≤-1【解题分析】

先表示出不等式组的解集,再由整数解的个数,可得b的取值范围.【题目详解】由x-a≥04-x>1,

则其整数解为:-1,-1,0,1,1,

∴-3<a≤-1.

故答案为-3<a≤-1.【题目点拨】本题考查解一元一次不等式组和一元一次不等式组的整数解等知识点,关键是能根据不等式组的解集和已知得出a的取值范围.17、2.【解题分析】

设AP=x,PB=4,由等腰直角三角形得到DP与PC,然后在直角三角形DPC中利用勾股定理列出CD与x的关系,列出函数解题即可【题目详解】设AP=x,PB=4,由等腰直角三角形性质可得到DP=,CP=,又易知三角形DPC为直角三角形,所以DC2=DP2+PC2==,利用二次函数性质得到DC2的最小值为8,所以DC的最小值为,故填【题目点拨】本题主要考察等腰直角三角形的性质与二次函数的性质,属于中等难度题,本题关键在于能用x表示出DC的长度18、y=-1x+1【解题分析】

直接把(2,-1)代入直线y=kx+1,求出k的值即可.【题目详解】∵直线y=kx+1经过点(2,-1),∴-1=2k+1,解得k=-1,∴函数关系式是y=-1x+1.故答案为:y=-1x+1.【题目点拨】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题(共78分)19、(1)原方程无解;(2)x≤1,数轴见解析;【解题分析】

(1)利用解分式方程的一般步骤求解即可.(2)求出两个不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.【题目详解】(1)去分母,方程两边同时乘以(x-3),可得:x-2=2(x-3)+1,

去括号可得:x-2=2x-6+1,

解得x=3,

检验:当x=3时,x-3=0,

∴x=3是分式方程的增根,原方程无解.(2)解:,

∵解不等式①得:x≤1,

解不等式②得:x<4,

∴不等式组的解集为:x≤1,

在数轴上表示不等式组的解集为:

.【题目点拨】此题考查解分式方程,解一元一次不等式组,在数轴上表示不等式组的解集的应用,解此题的关键是能根据不等式的解集找出不等式组的解集.20、(1)y=﹣200x+360000(0≤x≤300);(2)公司应拿出60辆该品牌平衡车促销才能使这批车的销售利润最大,最大利润为348000元.【解题分析】

(1)根据“利润=售价-成本”结合“总利润=促销部分的利润+正常零售的利润”列式进行计算即可得;(2)根据以促销价进行销售的数量不低于零售价销售数量的列出关于x的不等式,然后求出x的取值范围,继而根据一次函数的性质进行求解即可.【题目详解】(1)根据题意得:y=(4000﹣3000)x+(4200﹣3000)(300﹣x)=﹣200x+360000(0≤x≤300);(2)根据题意得:x≥(300-x),解得x≥60,由(1)可知,y=﹣200x+360000,∵﹣200<0,∴y随x的增大而减小,∴x=60时,y的值增大,最大值为:﹣200×60+360000=348000(元),答:公司应拿出60辆该品牌平衡车促销才能使这批车的销售利润最大,最大利润为348000元.【题目点拨】本题考查了一次函数的应用,弄清题意,找准各量间的数量关系是解题的关键.21、(1);(2)在的中点处,见解析;(3)点到距离是.【解题分析】

(1)根据平行线的性质得到,根据角平分线的定义得到,,于是得到,即可得到结论;(2)根据平行线的性质得到,等量代换得到,得到根据等腰三角形的性质即可得到结论;(3)根据(1)(2)可得,再设点到的距离是,建立等式,即可得到.【题目详解】解:(1),理由:,分别平分,,;(2)在的中点处,理由:,,,,,,,在的中点处;(3)由(1)(2)得,在中,,设点到的距离是,则有,.【题目点拨】本题考查了平行四边形的性质,角平分线的定义,等腰三角形的性质,正确识别图形是解题的关键.22、(1)见解析;(2)【解题分析】

(1)只要证明四边形ACHF是平行四边形,四边形ACGE是平行四边形,可得AC=HF=EG,即可推出EF=GH.

(2)首先证明∠BCF=90°,在Rt△BCF中,利用勾股定理即可解决问题;【题目详解】(1)证明:四边形是平行四边形,.四边形是平行四边形,四边形是平行四边形.∴∴(2)解:连接,如解图.,是的中点,.,.,.【题目点拨】本题考查平行四边形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23、(1)详见解析;(2)ⅰ)四边形AGBE是平行四边形,证明详见解析;ⅱ).【解题分析】

(1)只要证明△BAE≌△ACD;

(2)ⅰ)四边形AGBE是平行四边形,只要证明BG=AE,BG∥AE即可;

ⅱ)求出四边形BGAE的周长,△ABC的周长即可;【题目详解】(1)证明:如图1中,∵△ABC是等边三角形,∴AB=AC,∠BAE=∠C=60°,∵AE=CD,∴△BAE≌△ACD,∴∠ABE=∠CAD.(2)ⅰ)如图2中,结论:四边形AGBE是平行四边形.理由:∵△ADG,△ABC都是等边三角形,∴AG=AD,AB=AC,∴∠GAD=∠BAC=60°,∴△GAB≌△DAC,∴BG=CD,∠ABG=∠C,∵CD=AE,∠C=∠BAE,∴BG=AE,∠ABG=∠BAE,∴BG∥AE,∴四边形AGBE是平行四边形,ⅱ)如图2中,作AH⊥BC于H.∵BH=CH=∴∴∴四边形BGAE的周长=,△ABC的周长=3(k+1),∴四边形AGBE与△ABC的周长比=【题目点拨】本题考查全等三角形的判定和性质、平行四边形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.24、(1);(2)见解析。【解题分析】

(1)利用勾股定理求出AB的长即可;(2)根据勾股定理的逆定理,即可作出判断.【题目详解】(1)AB=;(2)如图,EF=,CD=,∵CD2+AB2=8+5=13,EF2=13,∴CD2+AB2=EF2,∴以AB、CD、EF三条线可以组成直角三角形.【题目点拨】本题考查了勾股定理、勾股定理的逆定理,充分利用网格是解题的关键.25、(1)三月份每瓶高档酒售价为1500元;(2)有三种进货方案,分别为:①购进种酒35瓶,种酒65瓶,②购进种酒36瓶,种酒64瓶,③购进种酒37瓶,种酒63瓶;(3),种酒越少,所用进货款就越少,在利润相同的情况下,选择方案①对经销商更有利.【解题分析】

(1)设三月份每瓶高档酒A售价为x元,然后根据三、四月卖出相同数量列出方程,求解即可;(2)设购进A种酒y瓶,表示出B种酒为(100-y)瓶,再根据预算资金列出不等式组,然后求出y的取值范围,再根据y是正整

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论