2024届安徽省亳州市涡阳县数学八下期末调研模拟试题含解析_第1页
2024届安徽省亳州市涡阳县数学八下期末调研模拟试题含解析_第2页
2024届安徽省亳州市涡阳县数学八下期末调研模拟试题含解析_第3页
2024届安徽省亳州市涡阳县数学八下期末调研模拟试题含解析_第4页
2024届安徽省亳州市涡阳县数学八下期末调研模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省亳州市涡阳县数学八下期末调研模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若函数的图象与坐标轴有三个交点,则b的取值范围是A.且 B. C. D.2.下列各组线段能构成直角三角形的一组是()A.30,40,50 B.7,12,13 C.5,9,12 D.3,4,63.如图,在矩形ABCD中,AB=8,BC=6,EF经过对角线的交点O,则图中阴影部分的面积是()A.6 B.12 C.15 D.244.图中的两个三角形是位似图形,它们的位似中心是()A.点P B.点DC.点M D.点N5.直线过点,,则的值是()A. B. C. D.6.如图,数轴上表示一个不等式的解集是()A. B. C. D.7.梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含l0千克)的种子,超过l0千克的那部分种子的价格将打折,并依此得到付款金额y(单位:元)与一次购买种子数量x(单位:千克)之间的函数关系如图所示.下列四种说法:①一次购买种子数量不超过l0千克时,销售价格为5元/千克;②一次购买30千克种子时,付款金额为100元;③一次购买10千克以上种子时,超过l0千克的那部分种子的价格打五折:④一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱.其中正确的个数是A.1个 B.2个 C.3个 D.4个8.将一副直角三角板如图放置,点C在FD的延长上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=12,则CD的长为()A.4 B.12﹣4 C.12﹣6 D.69.如图,在△ABC中,点D、E分别是边AB、AC上的点,且DE∥BC,若,DE=3,则BC的长度是()A.6 B.8 C.9 D.1010.等腰三角形的两边长分别为2、4,则它的周长为()A.8 B.10 C.8或10 D.以上都不对二、填空题(每小题3分,共24分)11.在函数y=中,自变量x的取值范围是12.若关于的分式方程有解,则的取值范围是_______.13.如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为20cm,则四边形ABFD的周长为________.14.一次函数y=﹣x,函数值y随x的增大而_____.15.某单位向一所希望小学赠送1080件文具,现用A、B两种不同的包装箱进行包装,已知每个B型包装箱比A型包装箱多装15件文具,单独使用B型包装箱比单独使用A型包装箱可少用12个.设A型包装箱每个可以装件文具,根据题意列方程为.16.如图,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,),过点E的直线l交x轴于点F,交y轴于点G(0,-2),则点F的坐标是17.图1是一个地铁站人口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点与之间的距离为,双翼的边缘,且与闸机侧立面夹角.当双翼收起时,可以通过闸机的物体的最大宽度为______18.如图,已知平行四边形,,是边的中点,是边上一动点,将线段绕点逆时针旋转至,连接,,,,则的最小值是____.三、解答题(共66分)19.(10分)先化简,再求值:,在﹣2,0,1,2四个数中选一个合适的代入求值.20.(6分)某商店的一种服装,每件成本为50元.经市场调研,售价为60元时,可销售800件;售价每提高5元,销售量将减少100件.求每件商品售价是多少元时,商店销售这批服装获利能达到12000元?21.(6分)如图,小刚想知道学校旗杆的高度,他发现旗杆顶端A处的绳子垂到地面B处后还多2米当他把绳子拉直并使下端刚好接触到地面C处,发现绳子下端到旗杆下端的距离为6米,请你帮小刚求出旗杆的高度AB长.22.(8分)如图,平行四边形中,在边上,,为平行四边形外一点,连接、,连接交于,且.(1)若,,求平行四边形的面积;(2)求证:.23.(8分)已知:如图所示,菱形中,于点,且为的中点,已知,求菱形的周长和面积.24.(8分)我市某风景区门票价格如图所示,有甲、乙两个旅行团队,计划在端午节期间到该景点游玩,两团队游客人数之和为100人,乙团队人数不超过40人.设甲团队人数为人,如果甲、乙两团队分别购买门票,两团队门票款之和为元.(1)直接写出关于的函数关系式,并写出自变的取值范围;(2)若甲团队人数不超过80人,计算甲、乙两团队联合购票比分别购票最多可节约多少钱?(3)端午节之后,该风景区对门票价格作了如下调整:人数不超过40人时,门票价格不变,人数超过40人但不超过80人时,每张门票降价元;人数超过80人时,每张门票降价元.在(2)的条件下,若甲、乙两个旅行团端午节之后去游玩联合购票比分别购票最多可节约3900元,求的值.25.(10分)某公司招聘一名公关人员,应聘者小王参加面试和笔试,成绩(100分制)如下表所示:面试笔试成绩评委1评委2评委392889086(1)请计算小王面试平均成绩;(2)如果面试平均成绩与笔试成绩按6:4的比确定,请计算出小王的最终成绩.26.(10分)已知直线y=kx+b经过点A(0,1),B(2,5).(1)求直线AB的解析式;(2)若直线y=﹣x﹣5与直线AB相交于点C.求点C的坐标;并根据图象,直接写出关于x的不等式﹣x﹣5<kx+b的解集.(3)直线y=﹣x﹣5与y轴交于点D,求△ACD的面积.

参考答案一、选择题(每小题3分,共30分)1、A【解题分析】抛物线与坐标轴有三个交点,则抛物线与x轴有2个交点,与y轴有一个交点.解:∵函数的图象与坐标轴有三个交点,∴,且,解得,b<1且b≠0.故选A.2、A【解题分析】试题分析:根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.解:A、∵302+402=502,∴该三角形符合勾股定理的逆定理,故是直角三角形,故正确;B、∵72+122≠132,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;C、∵52+92≠122,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;D、∵32+42≠62,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;故选A.3、B【解题分析】试题解析:在△AOE和△COF中,∠EAO=∠FCO,AO=CO,∠COF=∠EOA,∴△AOE≌△COF,则△AOE和△COF面积相等,∴阴影部分的面积与△CDO的面积相等,又∵矩形对角线将矩形分成面积相等的四部分,∴阴影部分的面积为=1.故选B.考点:矩形的性质.4、A【解题分析】试题分析:根据位似变换的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.解:∵位似图形的位似中心位于对应点连线所在的直线上,点M、N为对应点,所以位似中心在M、N所在的直线上,因为点P在直线MN上,所以点P为位似中心.故选A.考点:位似变换.5、B【解题分析】

分别将点,代入即可计算解答.【题目详解】解:分别将点,代入,得:,解得,故答案为:B.【题目点拨】本题考查了待定系数法求正比例函数解析式,将点的坐标代入解析式解方程是解题的关键.6、C【解题分析】

根据在数轴上表示不等式解集的方法解答即可.【题目详解】∵-1处是空心圆圈,且折线向右,

∴这个不等式的解集是x>-1.

故选:C.【题目点拨】考查的是在数轴上表示不等式的解集.在数轴上实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.7、D【解题分析】①由图可知,购买10千克种子需要50元,由此求出一次购买种子数量不超过10千克时的销售价格;②由图可知,超过10千克以后,超过的那部分种子的单价降低,而由购买50千克比购买10千克种子多付100元,求出超过10千克以后,超过的那部分种子的单价,再计算出一次购买30千克种子时的付款金额;③根据一次购买10千克以上种子时,超过10千克的那部分种子的价格为2.5元/千克,而2.5÷5=0.5,所以可以求出打的折数;④先求出一次购买40千克种子的付款金额为125元,再求出分两次购买且每次购买20千克种子的付款金额为150元,然后用150减去125,即可求出一次购买40千克种子比分两次购买且每次购买20千克种子少花的钱数.解:①由图可知,一次购买种子数量不超过10千克时,销售价格为:50÷10=5元/千克,正确;②由图可知,超过10千克的那部分种子的价格为:(150-50)÷(50-10)=2.5元/千克,所以,一次购买30千克种子时,付款金额为:50+2.5×(30-10)=100元,正确;③由于一次购买10千克以上种子时,超过10千克的那部分种子的价格为2.5元/千克,而2.5÷5=0.5,所以打五折,正确;④由于一次购买40千克种子需要:50+2.5×(40-10)=125元,分两次购买且每次购买20千克种子需要:2×[50+2.5×(20-10)]=150元,而150-125=25元,所以一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱,正确.故选D.8、B【解题分析】

过点B作BM⊥FD于点M,根据题意可求出BC的长度,然后在△EFD中可求出∠EDF=60°,进而可得出答案.【题目详解】解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=45°,AC=12,∴BC=AC=12.∵AB∥CF,∴BM=BC×sin45°=CM=BM=12,在△EFD中,∠F=90°,∠E=30°,∴∠EDF=60°,∴MD=BM÷tan60°=,∴CD=CM﹣MD=12﹣.故选B.【题目点拨】本题考查了解直角三角形,难度较大,解答此类题目的关键根据题意建立直角三角形利用所学的三角函数的关系进行解答.9、C【解题分析】根据平行线分线段成比例的性质,由,可得,根据相似三角形的判定与性质,由DE∥BC可知△ADE∽△ABC,可得,由DE=3,求得BC=9.故选:C.10、B【解题分析】

由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【题目详解】解:①当2为腰时,2+2=4,不能构成三角形,故此种情况不存在;

②当4为腰时,符合题意,则周长是2+4+4=1.

故选:B.【题目点拨】本题考查的是等腰三角形的性质和三边关系,解答此题时注意分类讨论,不要漏解.二、填空题(每小题3分,共24分)11、.【解题分析】

求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使在实数范围内有意义,必须.12、【解题分析】

分式方程去分母转化为整式方程,表示出分式方程的解,确定出m的范围即可.【题目详解】解:,去分母,得:,整理得:,显然,当时,方程无解,∴;当时,,∴,解得:;∴的取值范围是:;故答案为:.【题目点拨】此题考查了分式方程的解,始终注意分母不为0这个条件.13、26cm【解题分析】

先根据平移的性质得DF=AC,AD=CF=3cm,再由△ABC的周长为20cm得到AB+BC+AC=20cm,然后利用等线段代换可计算出AB+BC+CF+DF+AD=26(cm),于是得到四边形ABFD的周长为26cm.【题目详解】∵△ABC沿BC方向平移3cm得到△DEF,∴DF=AC,AD=CF=3cm,∵△ABC的周长为20cm,即AB+BC+AC=20cm,∴AB+BC+CF+DF+AD=AB+BC+AC+AD+CF=20+3+3=26(cm),即四边形ABFD的周长为26cm.故答案是:26cm.【题目点拨】考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.14、减小【解题分析】

根据其图象沿横轴的正方向的增减趋势,判断其增减性.【题目详解】解:因为一次函数y=中,k=所以函数值y随x的增大而减小.故答案是:减小.【题目点拨】考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.15、【解题分析】

单独使用B型包装箱比单独使用A型包装箱可少用12个;可列等量关系为:所用B型包装箱的数量+12=所用A型包装箱的数量,由此可得到所求的方程【题目详解】解:根据题意,得:16、(,0).【解题分析】试题分析:∵正方形的顶点A(m,2),∴正方形的边长为2,∴BC=2,而点E(n,),∴n=2+m,即E点坐标为(2+m,),∴k=2•m=(2+m),解得m=1,∴E点坐标为(3,),设直线GF的解析式为y=ax+b,把E(3,),G(0,﹣2)代入得,解得,∴直线GF的解析式为y=x﹣2,当y=0时,x﹣2=0,解得x=,∴点F的坐标为(,0).考点:反比例函数与一次函数的交点问题.17、【解题分析】

过点A作AE⊥PC于点E,过点B作BF⊥QD于点F,根据含30度角的直角三角形的性质即可求出AE与BF的长度,然后求出EF的长度即可得出答案.【题目详解】解:过点A作AE⊥PC于点E,过点B作BF⊥QD于点F,

∵AC=56,∠PCA=30°,由对称性可知:BF=AE,

∴通过闸机的物体最大宽度为2AE+AB=56+10=66;

故答案为:66cm.【题目点拨】本题考查解直角三角形,解题的关键是熟练运用含30度的直角直角三角形的性质,本题属于基础题型.18、【解题分析】

如图,作交于,连接、、作于,首先证明,因为,即可推出当、、共线时,的值最小,最小值.【题目详解】如图,作交于,连接、、作于.是等腰直角三角形,,,,,,,,,,,,,,当、、共线时,的值最小,最小值,在中,,,在中,.故答案为:.【题目点拨】本题考查了四边形的动点问题,掌握当、、共线时,的值最小,最小值是解题的关键.三、解答题(共66分)19、,1.【解题分析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x=1代入计算即可求出值.试题解析:原式=(==2(x+4)当x=1时,原式=1.20、70或80【解题分析】

要求服装的单价,可设服装的单价为x元,则每件服装的利润是(x-50)元,销售服装的件数是[800-20(x-60)]件,以此等量关系列出方程即可;【题目详解】解:设单价应定为x元,根据题意得:(x−50)[800−(x−60)÷5×100]=12000,(x−50)[800−20x+1200]=12000,整理得,x2−150x+5600=0,解得=70,=80;答:这种服装的单价应定为70元或80元.【题目点拨】本题主要考查了一元二次方程的应用,掌握一元二次方程的应用是解题的关键.21、旗杆的高度为8米【解题分析】

因为旗杆、绳子、地面正好构成直角三角形,设旗杆的高度为x米,则绳子的长度为米,根据勾股定理即可求得旗杆的高度.【题目详解】设旗杆的高度为x米,则绳子的长度为米,根据勾股定理可得:,解得,.答:旗杆的高度为8米.【题目点拨】此题考查了学生利用勾股定理解决实际问题的能力,解答本题的关键是用未知数表示出三边长度,利用勾股定理解答.22、(1);(2)证明见解析.【解题分析】

(1)过点作于点,由求出DH的长,然后根据平行四边形的面积求法求解即可;(2)在上截取点,使,连接,首先证明和是等边三角形,即可得到,,,然后可证,根据全等三角形的性质易得结论.【题目详解】解:(1)过点作于点,∵,∴,∴,∵四边形是平行四边形,∴,∴,∴,(2)在上截取点,使,连接.∵∴是等边三角形,∴,,∵,,∴AE=AB,∵四边形是平行四边形,∴,∴是等边三角形,∴,,∵,∴,∴,∴,∴.【题目点拨】本题考查了平行四边形的性质、等边三角形的判定以及三角形全等的判定和性质,根据题意作出常用辅助线是解题关键.23、周长为16;面积为8【解题分析】

直接利用线段垂直平分线的性质结合菱形的性质得出△ABD是等边三角形,直接利用菱形的性质结合勾股定理得出AC的长,利用菱形面积求法得出答案.【题目详解】∵DE⊥AB于E,且E为AB的中点,

∴AD=BD,

∵四边形ABCD是菱形,

∴AD=BA,

∴AB=AD=BD,

∴△ABD是等边三角形,

∴∠DAB=60°;

∵BD=4,

∴DO=2,AD=4,

∴AO==2,

∴AC=4;

∴AB===4,

∴菱形ABCD的周长为4×4=16;

菱形ABCD的面积为:BD•AC=×4×4=8【题目点拨】此题主要考查了菱形的性质以及等边三角形的判定方法,正确应用菱形的性质是解题关键.24、(1)当时,;当时,;(2)甲、乙两团队联合购票比分别购票最多可节约1800元;(3)的值为15.【解题分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论