版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省毕节市黔西县2024届八年级数学第二学期期末质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若二次根式有意义,则a的取值范围是()A.a<3 B.a>3 C.a≤3 D.a≠32.下列各式因式分解正确的是()A. B.C. D.3.下列二次根式是最简二次根式的是(
)A. B. C. D.4.甲、乙两个同学在四次数学模拟测试中,平均成绩都是112分,方差分别是s=5,s=12,则甲、乙两个同学的数学成绩比较稳定的是().A.甲 B.乙 C.甲和乙一样 D.无法确定5.在Rt△ABC中,∠C=90°,AC=5cm,BC=12cm,则斜边AB的长是()A.6cm B.8c C.13cm D.15cm6.如图,在四边形ABCD中,对角线AC,BD相交于点O,AB∥CD,添加下列条件不能使四边形ABCD成为平行四边形的是()A.AB=CD B.OB=ODC.∠BCD+∠ADC=180° D.AD=BC7.已知一个多边形内角和是外角和的4倍,则这个多边形是()A.八边形 B.九边形 C.十边形 D.十二边形8.某次知识竞赛共有20道题,每答对一道题得10分,答错或不答都扣5分.娜娜得分要超过90分,设她答对了x道题,则根据题意可列不等式为()A.10x-5(20-x)≥90 B.10x-5(20-x)>90C.20×10-5x>90 D.20×10-5x≥909.在□ABCD中,对角线AC与BD相交于点O,AC10,BD6,则下列线段不可能是□ABCD的边长的是()A.5 B.6 C.7 D.810.点(﹣5,1)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题(每小题3分,共24分)11.如图,在矩形ABCD中,对角线AC,BD相交于点O,若∠AOD=120°,AB=2,则BC的长为___________.12.函数中,自变量的取值范围是___.13.汽车开始行驶时,油箱中有油40L,如果每小时耗油5L,则油箱内余油量y(L)与行驶时间x(h)的关系式为_____.14.如图,直线y1=-x+a与直线y2=bx-4相交于点P(1,-3),则不等式-x+a≥bx-4的解集是___________.15.将一次函数的图象沿轴方向向右平移1个单位长度得到的直线解析式为_______.16.如图,中,,,,则__________.17.如果关于x的一次函数y=mx+(4m﹣2)的图象经过第一、三、四象限,那么m的取值范围是_____.18.如果一个多边形的每个外角都等于,那么这个多边形的内角和是______度.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,为坐标原点,矩形的顶点,将矩形的一个角沿直线折叠,使得点落在对角线上的点处,折痕与轴交于点.(1)求直线所对应的函数表达式;(2)若点在线段上,在线段上是否存在点,使以为顶点的四边形是平行四边形?若存在,请求出点的坐标;若不存在,请说明理由.20.(6分)中,AD是的平分线,,垂足为E,作,交直线AE于点设,.若,,依题意补全图1,并直接写出的度数;如图2,若是钝角,求的度数用含,的式子表示;如图3,若,直接写出的度数用含,的式子表示.21.(6分)如图,在中,,相交于点,点在上,点在上,经过点.求证:四边形是平行四边形.22.(8分)已知关于x的一元二次方程x2﹣(k+1)x+2k﹣2=1.(1)求证:此方程总有两个实数根;(2)若此方程有一个根大于1且小于1,求k的取值范围.23.(8分)如图,一次函数y=﹣x+4的图象与x轴y轴分别交于点A、点B,与正比例函数y=x的图象交于点C,将点C向右平移1个单位,再向下平移6个单位得点D.(1)求△OAB的周长;(2)求经过D点的反比例函数的解析式;24.(8分)如图,在凸四边形中,,.(1)利用尺规,以为边在四边形内部作等边(保留作图痕迹,不需要写作法).(2)连接,判断四边形的形状,并说明理由.25.(10分)如图,在平面直角坐标系中,直线:经过,分别交轴、直线、轴于点、、,已知.(1)求直线的解析式;(2)直线分别交直线于点、交直线于点,若点在点的右边,说明满足的条件.26.(10分)某商厦进货员预测一种应季衬衫能畅销市场,就用万元购进这种衬衫,面市后果然供不应求.商厦又用万元购进第二批这种衬衫,所购数量是第一批进量的倍,但单价贵了元.商厦销售这种衬衫时每件定价元,最后剩下件按八折销售,很快售完.在这两笔生意中,商厦共盈利多少元?
参考答案一、选择题(每小题3分,共30分)1、C【解题分析】
根据被开方数是非负数,可得答案.【题目详解】解:由题意得,3−a⩾0,解得a⩽3,故选:C.【题目点拨】本题主要考查了二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.2、A【解题分析】
分别利用完全平方公式以及平方差公式分解因式判断得出即可.【题目详解】解:A、,故此选项正确;B、,故此选项错误;C、,故此选项错误;D、根据,故此选项错误.故选:A.【题目点拨】此题主要考查了完全平方和平方差分解因式,根据已知熟练掌握相关公式是解题关键.3、C【解题分析】
根据最简二次根式的定义对每个选项进行判断即可.【题目详解】解:A.,故原选项不是最简二次根式;B.,故原选项不是最简二次根式;C.是最简二次根式;D.=4,故原选项不是最简二次根式.故选C.【题目点拨】本题考点:最简二次根式.4、A【解题分析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【题目详解】∵甲、乙两个同学的平均成绩都是112分,方差分别是S甲2=5,S乙2=12,∴S甲2<S乙2,∴成绩比较稳定的是甲;故选A.【题目点拨】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5、C【解题分析】
根据勾股定理求得斜边的长.【题目详解】解:∵Rt△ABC中,∠C=90°,AC=5cm,BC=12cm,∴AB==13cm,故选:C.【题目点拨】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方以及三角形面积公式的综合运用.6、D【解题分析】
已知AB∥CD,可根据有一组边平行且相等的四边形是平行四边形来判定,也可根据两组对边分别平行的四边形是平行四边形来判定.【题目详解】∵在四边形ABCD中,AB∥CD,∴可添加的条件是:AB=CD,∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形),故选项A不符合题意;∵AB∥CD,∴∠ABD=∠CDB,在△AOB和△COD中,∴△AOB≌△COD(ASA),∴AB=CD,∴四边形ABCD为平行四边形,故选项B不符合题意;∵∠BCD+∠ADC=180°,∴AD∥BC,∵AB∥CD,∴四边形ABCD是平行四边形,故选项C不符合题意;∵AB∥CD,AD=BC无法得出四边形ABCD是平行四边形,故选项D符合题意.故选:D.【题目点拨】本题考查了平行四边形的定义、平行四边形的判定定理;熟练掌握平行四边形的判定方法是解决问题的关键.7、C【解题分析】
设这个多边形的边数为n,然后根据内角和与外角和公式列方程求解即可.【题目详解】设这个多边形的边数为n,则(n-2)×180°=4×360°,解得:n=10,故选C.【题目点拨】本题主要考查多边形的内角和定理及多边形的外角和定理,熟练掌握多边形内角和定理是解答本题的关键.n变形的内角和为:(n-2)×180°,n变形的外角和为:360°;然后根据等量关系列出方程求解.8、B【解题分析】
据答对题的得分:10x;答错题的得分:-5(20-x),得出不等关系:得分要超过1分.【题目详解】解:根据题意,得
10x-5(20-x)>1.
故选:B.【题目点拨】本题考查由实际问题抽象出一元一次不等式,要特别注意:答错或不答都扣5分,至少即大于或等于.9、D【解题分析】
根据平行四边形的性质求出OA、OB,根据三角形的三边关系定理得到OA-OB<AB<OA+OB,代入求出即可.【题目详解】如图:,∵四边形ABCD是平行四边形,AC=10,BD=6,∴OA=OC=5,OD=OB=3,在△OAB中,OA−OB<AB<OA+OB,∴5−3<AB<5+3,即2<AB<8.同理可得AD、CD、BC的取值范围和AB相同.故选D.【题目点拨】本题主要考查三角形的三边关系和平行四边形的性质.牢记三角形的三边关系和平行四边形的性质是解题的关键.10、B【解题分析】
根据点的坐标的特征,即可确定其所在象限;【题目详解】解:由(-5,1)符合(-,+),故该点在第二象限;因此答案为B.【题目点拨】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).二、填空题(每小题3分,共24分)11、【解题分析】
由条件可求得为等边三角形,则可求得的长,在中,由勾股定理可求得的长.【题目详解】,,四边形为矩形,为等边三角形,,,在中,由勾股定理可求得.故答案为:.【题目点拨】本题主要考查矩形的性质,掌握矩形的对角线相等且互相平分是解题的关键.12、【解题分析】
根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【题目详解】根据题意得:,解得:.故答案是:.【题目点拨】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13、y=40-5x【解题分析】
直接利用汽车耗油量结合油箱的容积,进而得出油箱内剩余油量y(L)与行驶时间x(h)的关系式.【题目详解】由题意可得:y=40-5x.故答案为y=40-5x.【题目点拨】此题主要考查了函数关系式,根据汽车耗油量得出函数关系式是解题关键.14、x≤1.【解题分析】
观察函数图象得到当x<1时,函数y=-x+a的图象都在y=bx-4的图象上方,所以不等式-x+a≥bx-4的解集为x≤1.【题目详解】如图,当x<1时,函数y=-x+a的图象都在y=bx-4的图象上方,所以不等式-x+a≥bx-4的解集为x≤1;故答案为x≤1.【题目点拨】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.15、【解题分析】
平移后的直线的解析式的k不变,设出相应的直线解析式,从原直线解析式上找一个点,然后找到向右平移1个单位,代入设出的直线解析式,即可求得b,也就求得了所求的直线解析式.【题目详解】解:可设新直线解析式为y=2x+b,∵原直线y=2x经过点(0,0),∴向右平移1个单位,图像经过(1,0),代入新直线解析式得:b=,∴新直线解析式为:.故答案为.【题目点拨】此题主要考查了一次函数图象与几何变换,用到的知识点为:平移不改变直线解析式中的k,关键是得到平移后函数图像经过的一个具体点.16、【解题分析】
利用平行四边形的对角线互相平分得出AO=AC=1,BD=2BO,根据勾股定理求出BO的长,进而可求出BD的长.【题目详解】解:∵▱ABCD的对角线AC与BD相交于点O,AB=AC=2,∴AO=CO=AC=1,BD=2BO.∵AB⊥AC,∴BD=2BO=,故答案为:.【题目点拨】本题考查了平行四边形的性质以及勾股定理的运用,是中考常见题型,比较简单.17、0<m<【解题分析】
根据已知,图象经过第一、三、四象限,容易画出直线的草图,再根据直线的上升或下降趋势,以及与y轴的交点位置,即可判断x的取值范围.【题目详解】∵关于x的一次函数y=mx+(4m﹣2)的图象经过第一、三、四象限,∴,∴0<m<.故答案为:0<m<;【题目点拨】该题结合不等式组重点考查了一次函数的性质,即y=kx+b中k和b的意义,k决定了函数的增减性,即图像从左到右是上升还是下降,b决定了函数与y轴交点的位置,因此熟练掌握相关的知识点,该题就很容易解决.18、1260【解题分析】
首先根据外角和与外角和及每个外角的度数可得多边形的边数,再根据多边形内角和公式180(n-2)计算出答案.【题目详解】解:∵多边形的每一个外角都等于,∴它的边数为:,∴它的内角和:,故答案为:.【题目点拨】此题主要考查了多边形的内角和与外角和,根据多边形的外角和计算出多边形的边数是解题关键.三、解答题(共66分)19、(1)y=2x-1;(2)存在点,Q(,),使以为顶点的四边形为平行四边形.【解题分析】
(1)由矩形的性质可得出点B的坐标及OA,AB的长,利用勾股定理可求出OB的长,设AD=a,则DE=a,OD=8-a,OE=OB-BE=1-6=2,利用勾股定理可求出a值,进而可得出点D的坐标,再根据点B,D的坐标,利用待定系数法可求出直线BD所对应的函数表达式;(2)先假设存在点P满足条件,过E作交BC于P作,交BD于Q点,这样得到点Q,四边形即为所求平行四边形,过E作得,可得E点坐标,根据点B、E坐标求出直线BD的解析式,又根据平行的直线,k值相等,求出PE解析式,再求点出P坐标,从而求解.【题目详解】(1)由题意,得:点B的坐标为(8,6),OA=8,AB=OC=6,
∴OB==1.
设AD=a,则DE=a,OD=8-a,OE=OB-BE=1-6=2.
∵OD2=OE2+DE2,即(8-a)2=22+a2,
∴a=3,
∴OD=5,
∴点D的坐标为(5,0).
设直线BD所对应的函数表达式为y=kx+b(k≠0),
将B(8,6),D(5,0)代入y=kx+b,得:解得:∴直线BD所对应的函数表达式为y=2x-1.(2)如图2,假设在线段上存在点P使为顶点的四边形为平行四边形,过E作交BC于P,过点P作,交BD于Q点,四边形即为所求平行四边形,过E作得,,,直线,又,,,在线段上存在点P(5,6),使以为顶点的四边形为平行四边形,∵,设点Q的坐标为(m,2m-1),四边形DEPQ为平行四边形,D(5,0),,点P的纵坐标为6,
∴6-(2m-1)=-0,解得:m=,
∴点Q的坐标为(,).
∴存在,点Q的坐标为(,).【题目点拨】本题考查矩形的性质、勾股定理、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、平行四边形的性质,熟练掌握和灵活运用相关知识是解题的关键.20、(1)补图见解析,;(2);(3).【解题分析】
(1)先根据三角形内角和定理求出∠BAC和∠CAE,根据角平分线定义求出∠CAD,即可求出答案;(2)先根据三角形内角和定理求出∠BAC,根据角平分线定义求出∠BAD,根据三角形外角性质求出∠ADC,根据三角形内角和定理求出∠DAE,根据平行线的性质求出即可;(3)求出∠DAE度数,根据平行线的性质求出即可.【题目详解】解:如图1,,,,是的平分线,,,,,,,,;如图2,中,,.,是的平分线,,,,,,,,;如图3,中,,,,是的平分线,,,,,,.【题目点拨】本题考查了三角形内角和定理、三角形角平分线定义、三角形的高、平行线的性质等,熟练掌握相关的性质与定理是解题的关键.21、见解析.【解题分析】
先利用平行四边形的性质得到,;再利用平行线性质证得,;利用三角形全等可得,即可求证.【题目详解】在中,,相交于点,,.,.(AAS)..四边形是平行四边形.【题目点拨】本题考查了平行四边形的证明,难度适中,熟练掌握平行四边形的性质是解题的关键.22、(3)证明见解析;(2)3<k<2.【解题分析】
(3)根据方程的系数结合根的判别式,求得判别式恒成立,因此得证;(2)利用求根公式求根,根据有一个跟大于3且小于3,列出关于的不等式组,解之即可.【题目详解】(3)证明:△=b2-4ac=[-(k+3)]2-4×(2k-2)=k2-6k+9=(k-3)2,∵(k-3)2≥3,即△≥3,∴此方程总有两个实数根,(2)解:解得
x3=k-3,x2=2,∵此方程有一个根大于3且小于3,而x2>3,∴3<x3<3,即3<k-3<3.∴3<k<2,即k的取值范围为:3<k<2.【题目点拨】本题考查了根的判别式,解题的关键是:(3)牢记“当时,方程总有两个实数根”,(2)正确找出不等量关系列不等式组.23、(1)12+4(2)y=-【解题分析】
(1)根据题意可求A,B坐标,勾股定理可求AB长度,即可求△OAB的周长.
(2)把两个函数关系式联立成方程组求解,即为C点坐标,通过平移可求D点坐标,用待定系数法可求反比例函数解析式.【题目详解】(1)∵一次函数y=﹣x+4的图象与x轴y轴分别交于点A、点B,∴A(8,0),B(0,4)∴OA=8,OB=4在Rr△AOB中,AB==4,∴△OAB的周长=4+8+4=12+4(2)∵,∴∴C点坐标为(2,3)∵将点C向右平移1个单位,再向下平移6个单位得点D.∴D(3,﹣3)设过D点的反比例函数解析式y=,∴k=3×(﹣3)=﹣9∴反比例函数解析式y=.【题目点拨】本题考查了反比例函数与一次函数的交点问题,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.24、(1)见解析;(2)四边形ABCE是菱形,理由见解析.【解题分析】
(1)分别以点C、D为圆心,CD长为半径画弧,在四边形ABCD内部交于点E,连
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度大学生抚养费支付合同
- 2024年度版权授权使用合同规范本
- 2024年度广告投放及媒体合作合同
- 2024年度广告发布合同标的和发布方式
- 手动食盐粉碎器市场发展现状调查及供需格局分析预测报告
- 2024全新装卸工劳动合同范本下载
- 腹部护垫市场发展现状调查及供需格局分析预测报告
- 2024年度影视制作合同及版权分配与发行条款
- 纸制床罩市场环境与对策分析
- 2024年度抖音短视频制作外包合同
- 物业公司有偿服务管理办法及思路
- 五年级上册科学07.热辐射 教学设计含反思
- 生态学研究方法知识点概括以及生态学研究方法
- 法学方法论网考题库答案 吉林大学
- 产品设计、工艺更改通知书
- 大象版2022-2023六年级科学上册《2.1雾和云》课件
- 三年级下册美术课件-第4课 瓜果飘香丨赣美版
- 学术报告厅舞台灯光音响系统项目工程施工技术方案及技术措施
- 老年友善医院创建-老年人社会服务相关职责
- 【课题研究】-《普通高中英语阅读课文教学研究》结题报告
- 装维人员施工安全操作规范培训课件
评论
0/150
提交评论