版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市江津中学2024届八年级数学第二学期期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为()A.7.5平方千米 B.15平方千米 C.75平方千米 D.750平方千米2.做“抛掷一枚质地均匀的硬币试验”,在大量重复试验中,对于事件“正面朝上”的频率和概率,下列说法正确的是()A.概率等于频率 B.频率等于 C.概率是随机的 D.频率会在某一个常数附近摆动3.某小区居民利用“健步行APP”开展健步走活动,为了解居民的健步走情况,小文同学调查了部分居民某天行走的步数单位:千步,并将样本数据整理绘制成如下不完整的频数分布直方图和扇形统计图.有下面四个推断:小文此次一共调查了200位小区居民;行走步数为千步的人数超过调查总人数的一半;行走步数为千步的人数为50人;行走步数为千步的扇形圆心角是.根据统计图提供的信息,上述推断合理的是()A. B. C. D.4.在平面直角坐标系中,点P(-20,a)与点Q(b,13)关于原点对称,则a+b的值为()A.33B.-33C.-7D.75.已知反比例函数(k为常数,且k≠0)的图象经过点(3,4),则该函数图象必不经过点()A.(2,6) B.(-1,-12) C.(,24) D.(-3,8)6.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分线 C.AC2=BC•CD D.7.如图所示的是某超市入口的双买闸门,当它的双翼展开时,双翼边缘的端点A与B之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°,求当双翼收起时,可以通过闸机的物体的最大宽度是()A.74cm B.64cm C.54cm D.44cm8.下列几何图形是中心对称图形的是()A. B. C. D.9.已知一次函数y=kx+b(k≠0)图象经过第二、三、四象限,则一次函数y=﹣bx+kb图象可能是()A. B. C. D.10.实数a、b在数轴上对应的位置如图所示,则等于A. B. C. D.11.某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,8,9,16,12,7,这组数据的中位数和众数分别是()A.10,12 B.12,11 C.11,12 D.12,1212.关于函数y=-x-3的图象,有如下说法:①图象过点(0,-3);②图象与x轴的交点是(-3,0);③由图象可知y随x的增大而增大;④图象不经过第一象限;⑤图象是与y=-x+4平行的直线.其中正确的说法有()A.5个 B.4个 C.3个 D.2个二、填空题(每题4分,共24分)13.如图,在中,已知,则_______.14.计算6-15的结果是______.15.八年级两个班一次数学考试的成绩如下:八(1)班46人,平均成绩为86分;八(2)班54人,平均成绩为80分,则这两个班的平均成绩为__分.16.一组数据3,5,a,4,3的平均数是4,这组数据的方差为______.17.数据、、、、的方差是____.18.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B'位置,A点落在A'位置,若AC⊥A'B',则∠BAC的度数是__.
三、解答题(共78分)19.(8分)平面直角坐标系中,O为坐标原点,点A(3,4),点B(6,0).(1)如图①,求AB的长;(2)如图2,把图①中的△ABO绕点B顺时针旋转,使O的对应点M恰好落在OA的延长线上,N是点A旋转后的对应点;①求证:四边形AOBN是平行四边形;②求点N的坐标.(3)点C是OB的中点,点D为线段OA上的动点,在△ABO绕点B顺时针旋转过程中,点D的对应点是P,求线段CP长的取值范围.(直接写出结果)20.(8分)(定义学习)定义:如果四边形有一组对角为直角,那么我们称这样的四边形为“对直四边形”(判断尝试)在①梯形;②矩形:③菱形中,是“对直四边形”的是哪一个.(填序号)(操作探究)在菱形ABCD中,于点E,请在边AD和CD上各找一点F,使得以点A、E、C、F组成的四边形为“对直四边形”,画出示意图,并直接写出EF的长,(实践应用)某加工厂有一批四边形板材,形状如图所示,若AB=3米,AD=1米,.现根据客户要求,需将每张四边形板材进一步分割成两个等腰三角形板材和一个“对直四边形"板材,且这两个等腰三角形的腰长相等,要求材料充分利用无剩余.求分割后得到的等腰三角形的腰长,21.(8分)计算:16﹣(π﹣2019)0+2﹣1.22.(10分)在平面直角坐标系,直线y=2x+2交x轴于A,交y轴于D,(1)直接写直线y=2x+2与坐标轴所围成的图形的面积(2)以AD为边作正方形ABCD,连接AD,P是线段BD上(不与B,D重合)的一点,在BD上截取PG=,过G作GF垂直BD,交BC于F,连接AP.问:AP与PF有怎样的数量关系和位置关系?并说明理由;(3)在(2)中的正方形中,若∠PAG=45°,试判断线段PD,PG,BG之间有何关系,并说明理由.23.(10分)已知x=+1,y=﹣1,求x2+y2的值.24.(10分)城有肥料吨,城有肥料吨,现要把这些肥料全部运往、两乡.从城运往、两乡运肥料的费用分别是每吨元和元,从城往、两乡运肥料的费用分别为每吨元和元,现在乡需要肥料吨,乡需要肥料吨,设城运往乡的肥料量为吨,总运费为元.(1)写出总运费元与之间的关系式;(2)当总费用为元,求从、城分别调运、两乡各多少吨?(3)怎样调运化肥,可使总运费最少?最少运费是多少?25.(12分)计算:,26.某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?
参考答案一、选择题(每题4分,共48分)1、A【解题分析】分析:直接利用勾股定理的逆定理进而结合直角三角形面积求法得出答案.详解:∵52+122=132,∴三条边长分别为5里,12里,13里,构成了直角三角形,∴这块沙田面积为:×5×500×12×500=7500000(平方米)=7.5(平方千米).故选:A.点睛:此题主要考查了勾股定理的应用,正确得出三角形的形状是解题关键.2、D【解题分析】
频率是在一次试验中某一事件出现的次数与试验总数的比值。概率是某一事件所固有的性质。频率是变化的每次试验可能不同,概率是稳定值不变。在一定条件下频率可以近似代替概率。【题目详解】A、概率不等于频率,A选项错误;B、频率等于,B选项错误C、概率是稳定值不变,C选项错误D、频率会在某一个常数附近摆动,D选项是正确的。故答案为:D【题目点拨】此题主要考查了概率公式,以及频率和概率的区别。3、C【解题分析】
由千步的人数及其所占百分比可判断;由行走步数为千步的人数为70,未超过调查总人数的一半可判断;总人数乘以千步的人数所占比例可判断;用乘以千步人数所占比例可判断.【题目详解】小文此次一共调查了位小区居民,正确;行走步数为千步的人数为70,未超过调查总人数的一半,错误;行走步数为千步的人数为人,正确;行走步数为千步的扇形圆心角是,正确,故选C.【题目点拨】本题考查了频数率直方图,读懂统计图表,从中获得必要的信息是解题的关键.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.4、D【解题分析】试题分析:关于原点对称的两个点,横坐标和纵坐标分别互为相反数.根据性质可得:a=-13,b=20,则a+b=-13+20=1.考点:原点对称5、D【解题分析】
反比例函数(k为常数,且k≠0)的图象经过点(3,4),求出k值,然后依次判断各选项即可【题目详解】反比例函数(k为常数,且k≠0)的图象经过点(3,4),k=3×4=12;依次判断:A、2×6=12经过,B、-1×(-12)=12经过,C、×24=12经过,D、-3×8=-24不经过,故选D【题目点拨】熟练掌握反比例函数解析式的基础知识是解决本题的关键,难度不大6、C【解题分析】
结合图形,逐项进行分析即可.【题目详解】在△ADC和△BAC中,∠ADC=∠BAC,如果△ADC∽△BAC,需满足的条件有:①∠DAC=∠ABC或AC是∠BCD的平分线;②,故选C.【题目点拨】本题考查了相似三角形的条件,熟练掌握相似三角形的判定方法是解题的关键.7、B【解题分析】
首先过A作AM垂直PC于点M,过点B作BN垂直DQ于点N,再利用三角函数计算AM和BN,从而计算出MN.【题目详解】解:根据题意过A作AM垂直PC于点M,过点B作BN垂直DQ于点N所以故选B.【题目点拨】本题主要考查直角三角形的应用,关键在于计算AM的长度,这是考试的热点问题,应当熟练掌握.8、D【解题分析】
根据中心对称图形的定义判断即可.【题目详解】A、图形不是中心对称图形;B、图形不是中心对称图形;C、图形不是中心对称图形;D、图形是中心对称图形;故选D.【题目点拨】本题考查的是中心对称图形的定义,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,9、A【解题分析】
首先根据一次函数的性质确定k,b的符号,再确定一次函数y=﹣bx+kb系数的符号,判断出函数图象所经过的象限.【题目详解】∵一次函数y=kx+b经过第二,三,四象限,∴k<0,b<0,∴−b>0,kb>0,所以一次函数y=−bx+kb的图象经过一、二、三象限,故选:A.【题目点拨】本题考查一次函数图象与系数的关系,解决此类题目的关键是确定k、b的正负.10、A【解题分析】
直接利用数轴得出,,进而化简得出答案.【题目详解】解:由数轴可得:,,则原式.故选A.【题目点拨】此题主要考查了二次根式的性质与化简,正确得出各项的符号是解题关键.11、C【解题分析】试题分析:将原数据按由小到大排列起来,处于最中间的数就是中位数,如果中间有两个数,则中位数就是两个数的平均数;众数是指在这一组数据中出现次数最多的数.考点:众数;中位数12、B【解题分析】
根据一次函数的性质和图象上点的坐标特征解答.【题目详解】解:①将(0,-3)代入解析式得,左边=-3,右边=-3,故图象过(0,-3)点,正确;
②当y=0时,y=-x-3中,x=-3,故图象过(-3,0),正确;
③因为k=-1<0,所以y随x增大而减小,错误;
④因为k=-1<0,b=-3<0,所以图象过二、三、四象限,正确;
⑤因为y=-x-3与y=-x+4的k值(斜率)相同,故两图象平行,正确.
故选:B.【题目点拨】本题考查一次函数的性质和图象上点的坐标特征,要注意:在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.二、填空题(每题4分,共24分)13、【解题分析】
根据题意,先求出AD的长度,然后相似三角形的性质,得到,即可求出DE.【题目详解】解:∵,∴,∵,∴,∴,∴,∴;故答案为:.【题目点拨】本题考查了相似三角形的判定和性质,解题的关键是熟练掌握相似三角形的性质进行解题.14、6-【解题分析】
直接化简二次根式进而得出答案.【题目详解】解:原式=6-15×,=6-.故答案为:6-.【题目点拨】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.15、82.1【解题分析】
根据加权平均数公式,用(1)、(2)班的成绩和除以两班的总人数即可得.【题目详解】(分,故答案为:82.1.【题目点拨】本题考查了加权平均数,熟练掌握加权平均数的计算公式是解题的关键.若个数,,,,的权分别是,,,,,则叫做这个数的加权平均数.16、0.3.【解题分析】试题分析:∵3,5,a,4,3的平均数是4,∴(3+5+a+4+3)÷5=4,解得:a=5,则这组数据的方差S3=[(3﹣4)3+(5﹣4)3+(5﹣4)3+(4﹣4)3+(3﹣4)3]=0.3,故答案为0.3.考点:3.方差;3.算术平均数.17、【解题分析】分析:先求平均数,根据方差公式求解即可.详解:数据1,2,3,3,6的平均数∴数据1,2,3,3,6的方差:故答案为:点睛:考查方差的计算,记忆方差公式是解题的关键.18、70°【解题分析】
由旋转的角度易得∠ACA′=20°,若AC⊥A'B',则∠A′、∠ACA′互余,由此求得∠ACA′的度数,由于旋转过程并不改变角的度数,因此∠BAC=∠A′,即可得解.【题目详解】解:由题意知:∠ACA′=20°;
若AC⊥A'B',则∠A′+∠ACA′=90°,
得:∠A′=90°-20°=70°;
由旋转的性质知:∠BAC=∠A′=70°;
故∠BAC的度数是70°.故答案是:70°【题目点拨】本题考查旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.三、解答题(共78分)19、(1)AB的长是2;(2)①见解析;②点N坐标为(1,4);(3)线段CP长的取值范围为≤CP≤1.【解题分析】
(1)根据平面直角坐标系中任意两点的距离公式计算即可;(2)①根据平面直角坐标系中任意两点的距离公式计算出OA,从而得出OA=AB,然后根据等边对等角可得∠AOB=∠ABO,根据旋转的性质可得BM=BO,BN=BA,∠MBN=∠ABO=∠AOB,然后证出AO∥BN且AO=BN即可证出结论;②证出AN∥x轴,再结合平行四边形的边长和点A的坐标即可得出结论;(3)连接BP,根据题意,先根据三角形的三边关系可得当点P在线段OB上时,CP=BP-BC最短;当点P在线段OB延长线上时,CP=BP+BC最长,然后求出BP的最小值和最大值即可求出CP的最值,从而得出结论.【题目详解】(1)∵点A(3,4),点B(6,0)∴AB==2∴AB的长是2.(2)①证明:∵OA==2∴OA=AB∴∠AOB=∠ABO∵△ABO绕点B顺时针旋转得△NBM∴BM=BO,BN=BA,∠MBN=∠ABO=∠AOB∴∠OMB=∠AOB,OA=BN∴∠OMB=∠MBN∴AO∥BN且AO=BN∴四边形AOBN是平行四边形②如图1,连接AN∵四边形AOBN是平行四边形∴AN∥OB即AN∥x轴,AN=OB=6∴xN=xA+6=3+6=1,yN=yA=4∴点N坐标为(1,4)(3)连接BP∵点D为线段OA上的动点,OA的对应边为MN∴点P为线段MN上的动点∴点P的运动轨迹是以B为圆心,BP长为半径的圆∵C在OB上,且CB=OB=3∴当点P在线段OB上时,CP=BP-BC最短;当点P在线段OB延长线上时,CP=BP+BC最长如图2,当BP⊥MN时,BP最短∵S△NBM=S△ABO,MN=OA=2∴MN•BP=OB•yA∴BP=∴CP最小值=-3=当点P与M重合时,BP最大,BP=BM=OB=6∴CP最大值=6+3=1∴线段CP长的取值范围为≤CP≤1.【题目点拨】此题考查的是求平面直角坐标系中任意两点的距离、平行四边形的判定及性质、旋转的性质和线段的最值问题,掌握平面直角坐标系中任意两点的距离公式、平行四边形的判定及性质、旋转的性质和三角形的三边关系是解决此题的关键.20、【判断尝试】②;【操作探究】EF的长为2,EF的长为;【实践应用】方案1:两个等腰三角形的腰长都为米.理由见解析,方案2:两个等腰三角形的腰长都为2米.理由见解析,方案3:两个等腰三角形的腰长都为米,理由见解析.方案4:两个等腰三角形的腰长都为米,理由见解析.【解题分析】
[判断尝试]根据“对直四边形”定义和①梯形;②矩形:③菱形的性质逐一分析即可解答.[操作探究]由菱形性质和30°直角三角形性质即可求得EF的长.[实践应用]先作出“对直四边形”,容易得到另两个等腰三角形,再利用等腰三角形性质和勾股定理即可求出腰长.【题目详解】解:[判断尝试]①梯形不可能一组对角为直角;③菱形中只有正方形的一组对角为直角,②矩形四个角都是直角,故矩形有一组对角为直角,为“对直四边形”,故答案为②,[操作探究]F在边AD上时,如图:∴四边形AECF是矩形,∴AE=CE,又∵,∴BE=1,AE=,CE=AF=1,∴在Rt△AEF中,EF==2EF的长为2.F在边CD上时,AF⊥CD,∵四边形ABCD是菱形,∴AB=AD=2,∠B=∠D=60°,又∵AE⊥BC,∴∠BAE=∠BAF=30°,∴AE=AF=,∵∠BAD=120°,∴∠EAF=60°,∴△AEF为等边三角形,∴EF=AF=AE=即:EF的长为;故答案为2,.[实践应用]方案1:如图①,作,则四边形ABCD分为等腰、等腰、“对直四边形”ABED,其中两个等腰三角形的腰长都为米.理由:∵,∴四边形ABED为矩形,∴3米,∵,∴△DEC为等腰直角三角形,∴DE=EC=3米,∴DC=米,∵,∴=DC=米.方案2:如图②,作,则四边形ABCD分为等腰△FEB、等腰△FEC、“对直四边形”ABED,其中两个等腰三角形的腰长都为2米.理由:作,由(1)可知3米,BG=AD=1米,∴BC=1+3=4米,∵,∴△BEC为等腰直角三角形,∵,∴BC=2米.方案3:如图③,作CD、BC的垂直平分线交于点E,连接ED、EB,则四边形ABCD分为等腰△CED、等腰△CEB、“对直四边形”ABED,其中两个等腰三角形的腰长都为米.理由:连接CE,并延长交AB于点F,∵CD、BC的垂直平分线交于点E,∴,∴,∴.连接DB,DB==,∵ED=EB,∴△BED为等腰直角三角形,∴ED=米,∴米.方案4:如图④,作,交AB于点E,,则四边形ABCD分为等腰△AFE、等腰△AFD、“对直四边形”BEDC,其中两个等腰三角形的腰长都为米.理由:作,交AB于点E,可证∠ADE45°,∵,∴△ADE为等腰直角三角形,∴DE=米,作,∴DE=米.【题目点拨】此题是四边形综合题,主要考查了新定义“对直四边形”的理解和应用,矩形的判定和性质,勾股定理,正确作出图形是解本题的关键.21、3【解题分析】
本题涉及零指数幂、负指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【题目详解】解:原式=4-1+1【题目点拨】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.22、(1)1;(1)AP=PF且AP⊥PF,理由见解析;(3)PD1+BG1=PG1,理由见解析【解题分析】
(1)先根据一次函数解析式求出A,D的坐标,根据三角形的面积公式即可求解;(1)过点A作AH⊥DB,先计算出AD=,根据正方形的性质得到BD=,AH=DH=BD=,由PG=,得到DP+BG=,则PH=BG,可证得Rt△APH≌Rt△PFG,即可得到AP=PF且AP⊥PF;(3)把△AGB绕点A点逆时针旋转90°得到△AMD,可得∠MDA=∠ABG=45°,DM=BG,∠MAD=∠BAG,AM=AG,则∠MDP=90°,根据勾股定理有DP1+BG1=PM1,由∠PAG=45°,可得∠DAP+∠BAG=45°,即∠MAP=45°,易证得△AMP≌△AGP,得到MP=PG,即可DP1+BG1=PM1.【题目详解】(1)∵直线y=1x+1交x轴于A,交y轴于D,令x=0,解得y=1,∴D(0,1)令y=0,解得x=-1,∴A(-1,0)∴AO=1,DO=1,∴直线y=1x+1与坐标轴所围成的图形△AOD=×1×1=1;(1)AP=PF且AP⊥PF,理由如下:过点A作AH⊥DB,如图,∵A(-1,0),D(0,1)∴AD===AB,∵四边形ABCD是正方形∴BD==,∴AH=DH=BD=,而PG=,∴DP+BG=,而DH=DP+PH=∴PH=BG,∵∠GBF=45°∴BG=GF=HP∴Rt△APH≌Rt△PFG,∴AP=PF,∠PAH=∠PFG∴∠APH+∠GPF=90°即AP⊥PF;(3)PD1+BG1=PG1,理由如下:如图,把△AGB绕点A点逆时针旋转90°得到△AMD,连接MP,∴∠MDA=∠ABG=45°,DM=BG,∠MAD=∠BAG,AM=AG,∴∠MDP=90°,∴DP1+BG1=PM1,又∵∠PAG=45°,∴∠DAP+∠BAG=45°,∴∠MAD+∠DAP=45°,即∠MAP=45°,而AM=AG,∴△AMP≌△AGP,∴MP=PG,∴PD1+BG1=PG1【题目点拨】此题主要考查一次函数与正方形的性质综合,解题的关键是熟知一次函数的图像与性质、正方形的性质、全等三角形的判定与性质.23、1【解题分析】
先根据x、y的值计算出x+y、xy的值,再代入原式=(x+y)2﹣2xy计算可得.【题目详解】先根据x、y的值计算出x+y、xy的值,再代入原式=(x+y)2﹣2xy计算可得.解:∵x=+1,y=﹣1,∴x+y=+1+﹣1=2、xy=(+1)(﹣1)=2﹣1=1,则原式=(x+y)2﹣2xy=(2)2﹣2×1=8﹣2=1.【题目点拨】本题主要考查二次根式的化简求值,解题的关键是掌握二次根式运算法则及平方差公式.24、(1);(2)城运往乡的肥料量为吨,城运往乡的肥料量为吨,城运往的肥料量分别为吨,城运往的肥料量分别为吨;(3)从城运往乡吨,运往乡吨;从城运往乡吨,运往乡吨,此时总运费最少,总运费最小值是元【解题分析】
(1)设C城运往A乡的化肥为x吨,表示出A城运往D乡的化肥为吨,B城运往C乡的化肥为吨,B城运往D乡的化肥为吨,总运费为y,然后根据总运费的表达式列式整理,再根据运往各地的肥料数不小于0列式求出x的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 集料视频课件
- 2024版设备采购合同标的为工业自动化设备3篇
- 部编版四年级语文上册第21课《古诗三首》教学设计
- 工业园区绿色低碳发展水平评价规范-地方标准格式审查稿
- 《桩基检测技术上》课件
- 《时间之窗缺口理论》课件
- 教科版小学综合实践6下(教案+课件)6 我为学校出点力 郑湘娥
- 牙龈脓肿病因介绍
- 《债法总论讲义》课件
- 《毒物与化学》课件
- 控制性低中心静脉压在腹腔镜肝部分切除术的应用
- 体检科年终报告工作总结
- 血糖异常的护理
- 视频监控系统维护方案
- 尿标本留取的品管圈课件
- 《安全仪表系统SIS》课件
- 哈利波特与密室课件
- 四川省宜宾市叙州区2023-2024学年八年级上学期期末数学试题(含答案)
- 护理健康教育方法与技巧
- 《黑洞背景模板》课件
- 大学教师职业生涯规划书
评论
0/150
提交评论